亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Data mesh is an emerging decentralized approach to managing and generating value from analytical enterprise data at scale. It shifts the ownership of the data to the business domains closest to the data, promotes sharing and managing data as autonomous products, and uses a federated and automated data governance model. The data mesh relies on a managed data platform that offers services to domain and governance teams to build, share, and manage data products efficiently. However, designing and implementing a self-serve data platform is challenging, and the platform engineers and architects must understand and choose the appropriate design options to ensure the platform will enhance the experience of domain and governance teams. For these reasons, this paper proposes a catalog of architectural design decisions and their corresponding decision options by systematically reviewing 43 industrial gray literature articles on self-serve data platforms in data mesh. Moreover, we used semi-structured interviews with six data engineering experts with data mesh experience to validate, refine, and extend the findings from the literature. Such a catalog of design decisions and options drawn from the state of practice shall aid practitioners in building data meshes while providing a baseline for further research on data mesh architectures.

相關內容

設計是對現有狀的一種重新認識和打破重組的過程,設計讓一切變得更美。

Meshfree simulation methods are emerging as compelling alternatives to conventional mesh-based approaches, particularly in the fields of Computational Fluid Dynamics (CFD) and continuum mechanics. In this publication, we provide a comprehensive overview of our research combining Machine Learning (ML) and Fraunhofer's MESHFREE software (www.meshfree.eu), a powerful tool utilizing a numerical point cloud in a Generalized Finite Difference Method (GFDM). This tool enables the effective handling of complex flow domains, moving geometries, and free surfaces, while allowing users to finely tune local refinement and quality parameters for an optimal balance between computation time and results accuracy. However, manually determining the optimal parameter combination poses challenges, especially for less experienced users. We introduce a novel ML-optimized approach, using active learning, regression trees, and visualization on MESHFREE simulation data, demonstrating the impact of input combinations on results quality and computation time. This research contributes valuable insights into parameter optimization in meshfree simulations, enhancing accessibility and usability for a broader user base in scientific and engineering applications.

Multi-modal emotion recognition has recently gained a lot of attention since it can leverage diverse and complementary relationships over multiple modalities, such as audio, visual, and text. Most state-of-the-art methods for multimodal fusion rely on recurrent networks or conventional attention mechanisms that do not effectively leverage the complementary nature of the modalities. In this paper, we focus on dimensional emotion recognition based on the fusion of facial, vocal, and text modalities extracted from videos. Specifically, we propose a recursive cross-modal attention (RCMA) to effectively capture the complementary relationships across the modalities in a recursive fashion. The proposed model is able to effectively capture the inter-modal relationships by computing the cross-attention weights across the individual modalities and the joint representation of the other two modalities. To further improve the inter-modal relationships, the obtained attended features of the individual modalities are again fed as input to the cross-modal attention to refine the feature representations of the individual modalities. In addition to that, we have used Temporal convolution networks (TCNs) to capture the temporal modeling (intra-modal relationships) of the individual modalities. By deploying the TCNs as well cross-modal attention in a recursive fashion, we are able to effectively capture both intra- and inter-modal relationships across the audio, visual, and text modalities. Experimental results on validation-set videos from the AffWild2 dataset indicate that our proposed fusion model is able to achieve significant improvement over the baseline for the sixth challenge of Affective Behavior Analysis in-the-Wild 2024 (ABAW6) competition.

Mediation analysis is an important statistical tool in many research fields. Its aim is to investigate the mechanism along the causal pathway between an exposure and an outcome. The joint significance test is widely utilized as a prominent statistical approach for examining mediation effects in practical applications. Nevertheless, the limitation of this mediation testing method stems from its conservative Type I error, which reduces its statistical power and imposes certain constraints on its popularity and utility. The proposed solution to address this gap is the adaptive joint significance test for one mediator, a novel data-adaptive test for mediation effect that exhibits significant advancements compared to traditional joint significance test. The proposed method is designed to be user-friendly, eliminating the need for complicated procedures. We have derived explicit expressions for size and power, ensuring the theoretical validity of our approach. Furthermore, we extend the proposed adaptive joint significance tests for small-scale mediation hypotheses with family-wise error rate (FWER) control. Additionally, a novel adaptive Sobel-type approach is proposed for the estimation of confidence intervals for the mediation effects, demonstrating significant advancements over conventional Sobel's confidence intervals in terms of achieving desirable coverage probabilities. Our mediation testing and confidence intervals procedure is evaluated through comprehensive simulations, and compared with numerous existing approaches. Finally, we illustrate the usefulness of our method by analysing three real-world datasets with continuous, binary and time-to-event outcomes, respectively.

Fatigue data arise in many research and applied areas and there have been statistical methods developed to model and analyze such data. The distributions of fatigue life and fatigue strength are often of interest to engineers designing products that might fail due to fatigue from cyclic-stress loading. Based on a specified statistical model and the maximum likelihood method, the cumulative distribution function (cdf) and quantile function (qf) can be estimated for the fatigue-life and fatigue-strength distributions. Likelihood-based confidence bands then can be obtained for the cdf and qf. This paper provides equivalence results for confidence bands for fatigue-life and fatigue-strength models. These results are useful for data analysis and computing implementation. We show (a) the equivalence of the confidence bands for the fatigue-life cdf and the fatigue-life qf, (b) the equivalence of confidence bands for the fatigue-strength cdf and the fatigue-strength qf, and (c) the equivalence of confidence bands for the fatigue-life qf and the fatigue-strength qf. Then we illustrate the usefulness of those equivalence results with two examples using experimental fatigue data.

In offline reinforcement learning (RL), an RL agent learns to solve a task using only a fixed dataset of previously collected data. While offline RL has been successful in learning real-world robot control policies, it typically requires large amounts of expert-quality data to learn effective policies that generalize to out-of-distribution states. Unfortunately, such data is often difficult and expensive to acquire in real-world tasks. Several recent works have leveraged data augmentation (DA) to inexpensively generate additional data, but most DA works apply augmentations in a random fashion and ultimately produce highly suboptimal augmented experience. In this work, we propose Guided Data Augmentation (GuDA), a human-guided DA framework that generates expert-quality augmented data. The key insight behind GuDA is that while it may be difficult to demonstrate the sequence of actions required to produce expert data, a user can often easily characterize when an augmented trajectory segment represents progress toward task completion. Thus, a user can restrict the space of possible augmentations to automatically reject suboptimal augmented data. To extract a policy from GuDA, we use off-the-shelf offline reinforcement learning and behavior cloning algorithms. We evaluate GuDA on a physical robot soccer task as well as simulated D4RL navigation tasks, a simulated autonomous driving task, and a simulated soccer task. Empirically, GuDA enables learning given a small initial dataset of potentially suboptimal experience and outperforms a random DA strategy as well as a model-based DA strategy.

We consider the penalized distributionally robust optimization (DRO) problem with a closed, convex uncertainty set, a setting that encompasses the $f$-DRO, Wasserstein-DRO, and spectral/$L$-risk formulations used in practice. We present Drago, a stochastic primal-dual algorithm that achieves a state-of-the-art linear convergence rate on strongly convex-strongly concave DRO problems. The method combines both randomized and cyclic components with mini-batching, which effectively handles the unique asymmetric nature of the primal and dual problems in DRO. We support our theoretical results with numerical benchmarks in classification and regression.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges.

Deep Learning (DL) is vulnerable to out-of-distribution and adversarial examples resulting in incorrect outputs. To make DL more robust, several posthoc anomaly detection techniques to detect (and discard) these anomalous samples have been proposed in the recent past. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection for DL based applications. We provide a taxonomy for existing techniques based on their underlying assumptions and adopted approaches. We discuss various techniques in each of the categories and provide the relative strengths and weaknesses of the approaches. Our goal in this survey is to provide an easier yet better understanding of the techniques belonging to different categories in which research has been done on this topic. Finally, we highlight the unsolved research challenges while applying anomaly detection techniques in DL systems and present some high-impact future research directions.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司