亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We prove essentially optimal fine-grained lower bounds on the gap between a data structure and a partially retroactive version of the same data structure. Precisely, assuming any one of three standard conjectures, we describe a problem that has a data structure where operations run in $O(T(n,m))$ time per operation, but any partially retroactive version of that data structure requires $T(n,m) \cdot m^{1-o(1)}$ worst-case time per operation, where $n$ is the size of the data structure at any time and $m$ is the number of operations. Any data structure with operations running in $O(T(n,m))$ time per operation can be converted (via the "rollback method") into a partially retroactive data structure running in $O(T(n,m) \cdot m)$ time per operation, so our lower bound is tight up to an $m^{o(1)}$ factor common in fine-grained complexity.

相關內容

This paper presents a new strategy to deal with the excessive diffusion that standard finite volume methods for compressible Euler equations display in the limit of low Mach number. The strategy can be understood as using centered discretizations for the acoustic part of the Euler equations and stabilizing them with a leap-frog-type ("sequential explicit") time integration, a fully explicit method. This time integration takes inspiration from time-explicit staggered grid numerical methods. In this way, advantages of staggered methods carry over to collocated methods. The paper provides a number of new collocated schemes for linear acoustic/Maxwell equations that are inspired by the Yee scheme. They are then extended to an all-speed method for the full Euler equations on Cartesian grids. By taking the opposite view and taking inspiration from collocated methods, the paper also suggests a new way of staggering the variables which increases the stability as compared to the traditional Yee scheme.

Sample-efficient offline reinforcement learning (RL) with linear function approximation has recently been studied extensively. Much of prior work has yielded the minimax-optimal bound of $\tilde{\mathcal{O}}(\frac{1}{\sqrt{K}})$, with $K$ being the number of episodes in the offline data. In this work, we seek to understand instance-dependent bounds for offline RL with function approximation. We present an algorithm called Bootstrapped and Constrained Pessimistic Value Iteration (BCP-VI), which leverages data bootstrapping and constrained optimization on top of pessimism. We show that under a partial data coverage assumption, that of \emph{concentrability} with respect to an optimal policy, the proposed algorithm yields a fast rate of $\tilde{\mathcal{O}}(\frac{1}{K})$ for offline RL when there is a positive gap in the optimal Q-value functions, even when the offline data were adaptively collected. Moreover, when the linear features of the optimal actions in the states reachable by an optimal policy span those reachable by the behavior policy and the optimal actions are unique, offline RL achieves absolute zero sub-optimality error when $K$ exceeds a (finite) instance-dependent threshold. To the best of our knowledge, these are the first $\tilde{\mathcal{O}}(\frac{1}{K})$ bound and absolute zero sub-optimality bound respectively for offline RL with linear function approximation from adaptive data with partial coverage. We also provide instance-agnostic and instance-dependent information-theoretical lower bounds to complement our upper bounds.

We propose a continuous optimization framework for discovering a latent directed acyclic graph (DAG) from observational data. Our approach optimizes over the polytope of permutation vectors, the so-called Permutahedron, to learn a topological ordering. Edges can be optimized jointly, or learned conditional on the ordering via a non-differentiable subroutine. Compared to existing continuous optimization approaches our formulation has a number of advantages including: 1. validity: optimizes over exact DAGs as opposed to other relaxations optimizing approximate DAGs; 2. modularity: accommodates any edge-optimization procedure, edge structural parameterization, and optimization loss; 3. end-to-end: either alternately iterates between node-ordering and edge-optimization, or optimizes them jointly. We demonstrate, on real-world data problems in protein-signaling and transcriptional network discovery, that our approach lies on the Pareto frontier of two key metrics, the SID and SHD.

Learning in neural networks is often framed as a problem in which targeted error signals are directly propagated to parameters and used to produce updates that induce more optimal network behaviour. Backpropagation of error (BP) is an example of such an approach and has proven to be a highly successful application of stochastic gradient descent to deep neural networks. We propose constrained parameter inference (COPI) as a new principle for learning. The COPI approach assumes that learning can be set up in a manner where parameters infer their own values based upon observations of their local neuron activities. We find that this estimation of network parameters is possible under the constraints of decorrelated neural inputs and top-down perturbations of neural states for credit assignment. We show that the decorrelation required for COPI allows learning at extremely high learning rates, competitive with that of adaptive optimizers, as used by BP. We further demonstrate that COPI affords a new approach to feature analysis and network compression. Finally, we argue that COPI may shed new light on learning in biological networks given the evidence for decorrelation in the brain.

A dynamic graph algorithm is a data structure that answers queries about a property of the current graph while supporting graph modifications such as edge insertions and deletions. Prior work has shown strong conditional lower bounds for general dynamic graphs, yet graph families that arise in practice often exhibit structural properties that the existing lower bound constructions do not possess. We study three specific graph families that are ubiquitous, namely constant-degree graphs, power-law graphs, and expander graphs, and give the first conditional lower bounds for them. Our results show that even when restricting our attention to one of these graph classes, any algorithm for fundamental graph problems such as distance computation or approximation or maximum matching, cannot simultaneously achieve a sub-polynomial update time and query time. For example, we show that the same lower bounds as for general graphs hold for maximum matching and ($s,t$)-distance in constant-degree graphs, power-law graphs or expanders. Namely, in an $m$-edge graph, there exists no dynamic algorithms with both $O(m^{1/2 - \epsilon})$ update time and $ O(m^{1 -\epsilon})$ query time, for any small $\epsilon > 0$. Note that for ($s,t$)-distance the trivial dynamic algorithm achieves an almost matching upper bound of constant update time and $O(m)$ query time. We prove similar bounds for the other graph families and for other fundamental problems such as densest subgraph detection and perfect matching.

In the sequential decision making setting, an agent aims to achieve systematic generalization over a large, possibly infinite, set of environments. Such environments are modeled as discrete Markov decision processes with both states and actions represented through a feature vector. The underlying structure of the environments allows the transition dynamics to be factored into two components: one that is environment-specific and another that is shared. Consider a set of environments that share the laws of motion as an example. In this setting, the agent can take a finite amount of reward-free interactions from a subset of these environments. The agent then must be able to approximately solve any planning task defined over any environment in the original set, relying on the above interactions only. Can we design a provably efficient algorithm that achieves this ambitious goal of systematic generalization? In this paper, we give a partially positive answer to this question. First, we provide a tractable formulation of systematic generalization by employing a causal viewpoint. Then, under specific structural assumptions, we provide a simple learning algorithm that guarantees any desired planning error up to an unavoidable sub-optimality term, while showcasing a polynomial sample complexity.

Learning a predictive model of the mean return, or value function, plays a critical role in many reinforcement learning algorithms. Distributional reinforcement learning (DRL) methods instead model the value distribution, which has been shown to improve performance in many settings. In this paper, we model the value distribution as approximately normal using the Markov Chain central limit theorem. We analytically compute quantile bars to provide a new DRL target that is informed by the decrease in standard deviation that occurs over the course of an episode. In addition, we propose a policy update strategy based on uncertainty as measured by structural characteristics of the value distribution not present in the standard value function. The approach we outline is compatible with many DRL structures. We use two representative on-policy algorithms, PPO and TRPO, as testbeds and show that our methods produce performance improvements in continuous control tasks.

Most of the literature on learning in games has focused on the restrictive setting where the underlying repeated game does not change over time. Much less is known about the convergence of no-regret learning algorithms in dynamic multiagent settings. In this paper, we characterize the convergence of \emph{optimistic gradient descent (OGD)} in time-varying games by drawing a strong connection with \emph{dynamic regret}. Our framework yields sharp convergence bounds for the equilibrium gap of OGD in zero-sum games parameterized on the \emph{minimal} first-order variation of the Nash equilibria and the second-order variation of the payoff matrices, subsuming known results for static games. Furthermore, we establish improved \emph{second-order} variation bounds under strong convexity-concavity, as long as each game is repeated multiple times. Our results also apply to time-varying \emph{general-sum} multi-player games via a bilinear formulation of correlated equilibria, which has novel implications for meta-learning and for obtaining refined variation-dependent regret bounds, addressing questions left open in prior papers. Finally, we leverage our framework to also provide new insights on dynamic regret guarantees in static games.

The geometric optimisation of crystal structures is a procedure widely used in Chemistry that changes the geometrical placement of the particles inside a structure. It is called structural relaxation and constitutes a local minimization problem with a non-convex objective function whose domain complexity increases along with the number of particles involved. In this work we study the performance of the two most popular first order optimisation methods, Gradient Descent and Conjugate Gradient, in structural relaxation. The respective pseudocodes can be found in Section 6. Although frequently employed, there is a lack of their study in this context from an algorithmic point of view. In order to accurately define the problem, we provide a thorough derivation of all necessary formulae related to the crystal structure energy function and the function's differentiation. We run each algorithm in combination with a constant step size, which provides a benchmark for the methods' analysis and direct comparison. We also design dynamic step size rules and study how these improve the two algorithms' performance. Our results show that there is a trade-off between convergence rate and the possibility of an experiment to succeed, hence we construct a function to assign utility to each method based on our respective preference. The function is built according to a recently introduced model of preference indication concerning algorithms with deadline and their run time. Finally, building on all our insights from the experimental results, we provide algorithmic recipes that best correspond to each of the presented preferences and select one recipe as the optimal for equally weighted preferences.

We provide sparse principal loading analysis which is a new concept that reduces dimensionality of cross sectional data and identifies the underlying covariance structure. Sparse principal loading analysis selects a subset of existing variables for dimensionality reduction while variables that have a small distorting effect on the covariance matrix are discarded. Therefore, we show how to detect these variables and provide methods to assess their magnitude of distortion. Sparse principal loading analysis is twofold and can also identify the underlying block diagonal covariance structure using sparse loadings. This is a new approach in this context and we provide a required criterion to evaluate if the found block-structure fits the sample. The method uses sparse loadings rather than eigenvectors to decompose the covariance matrix which can result in a large loss of information if the loadings of choice are too sparse. However, we show that this is no concern in our new concept because sparseness is controlled by the aforementioned evaluation criterion. Further, we show the advantages of sparse principal loading analysis both in the context of variable selection and covariance structure detection, and illustrate the performance of the method with simulations and on real datasets. Supplementary material for this article is available online.

北京阿比特科技有限公司