Precision medicine is a rapidly expanding area of health research wherein patient level information is used to inform treatment decisions. A statistical framework helps to formalize the individualization of treatment decisions that characterize personalized management plans. Numerous methods have been proposed to estimate individualized treatment rules that optimize expected patient outcomes, many of which have desirable properties such as robustness to model misspecification. However, while individual data are essential in this context, there may be concerns about data confidentiality, particularly in multi-centre studies where data are shared externally. To address this issue, we compared two approaches to privacy preservation: (i) data pooling, which is a covariate microaggregation technique and (ii) distributed regression. These approaches were combined with the doubly robust yet user-friendly method of dynamic weighted ordinary least squares to estimate individualized treatment rules. In simulations, we extensively evaluated the performance of the methods in estimating the parameters of the decision rule under different assumptions. The results demonstrate that double robustness is not maintained in data pooling setting and that this can result in bias, whereas the distributed regression provides good performance. We illustrate the methods via an analysis of optimal Warfarin dosing using data from the International Warfarin Consortium.
The growing complexity of Cyber-Physical Systems (CPS) and challenges in ensuring safety and security have led to the increasing use of deep learning methods for accurate and scalable anomaly detection. However, machine learning (ML) models often suffer from low performance in predicting unexpected data and are vulnerable to accidental or malicious perturbations. Although robustness testing of deep learning models has been extensively explored in applications such as image classification and speech recognition, less attention has been paid to ML-driven safety monitoring in CPS. This paper presents the preliminary results on evaluating the robustness of ML-based anomaly detection methods in safety-critical CPS against two types of accidental and malicious input perturbations, generated using a Gaussian-based noise model and the Fast Gradient Sign Method (FGSM). We test the hypothesis of whether integrating the domain knowledge (e.g., on unsafe system behavior) with the ML models can improve the robustness of anomaly detection without sacrificing accuracy and transparency. Experimental results with two case studies of Artificial Pancreas Systems (APS) for diabetes management show that ML-based safety monitors trained with domain knowledge can reduce on average up to 54.2% of robustness error and keep the average F1 scores high while improving transparency.
The number of information systems (IS) studies dealing with explainable artificial intelligence (XAI) is currently exploding as the field demands more transparency about the internal decision logic of machine learning (ML) models. However, most techniques subsumed under XAI provide post-hoc-analytical explanations, which have to be considered with caution as they only use approximations of the underlying ML model. Therefore, our paper investigates a series of intrinsically interpretable ML models and discusses their suitability for the IS community. More specifically, our focus is on advanced extensions of generalized additive models (GAM) in which predictors are modeled independently in a non-linear way to generate shape functions that can capture arbitrary patterns but remain fully interpretable. In our study, we evaluate the prediction qualities of five GAMs as compared to six traditional ML models and assess their visual outputs for model interpretability. On this basis, we investigate their merits and limitations and derive design implications for further improvements.
Applications of Reinforcement Learning (RL), in which agents learn to make a sequence of decisions despite lacking complete information about the latent states of the controlled system, that is, they act under partial observability of the states, are ubiquitous. Partially observable RL can be notoriously difficult -- well-known information-theoretic results show that learning partially observable Markov decision processes (POMDPs) requires an exponential number of samples in the worst case. Yet, this does not rule out the existence of large subclasses of POMDPs over which learning is tractable. In this paper we identify such a subclass, which we call weakly revealing POMDPs. This family rules out the pathological instances of POMDPs where observations are uninformative to a degree that makes learning hard. We prove that for weakly revealing POMDPs, a simple algorithm combining optimism and Maximum Likelihood Estimation (MLE) is sufficient to guarantee polynomial sample complexity. To the best of our knowledge, this is the first provably sample-efficient result for learning from interactions in overcomplete POMDPs, where the number of latent states can be larger than the number of observations.
The emerging public awareness and government regulations of data privacy motivate new paradigms of collecting and analyzing data that are transparent and acceptable to data owners. We present a new concept of privacy and corresponding data formats, mechanisms, and theories for privatizing data during data collection. The privacy, named Interval Privacy, enforces the raw data conditional distribution on the privatized data to be the same as its unconditional distribution over a nontrivial support set. Correspondingly, the proposed privacy mechanism will record each data value as a random interval (or, more generally, a range) containing it. The proposed interval privacy mechanisms can be easily deployed through survey-based data collection interfaces, e.g., by asking a respondent whether its data value is within a randomly generated range. Another unique feature of interval mechanisms is that they obfuscate the truth but do not perturb it. Using narrowed range to convey information is complementary to the popular paradigm of perturbing data. Also, the interval mechanisms can generate progressively refined information at the discretion of individuals, naturally leading to privacy-adaptive data collection. We develop different aspects of theory such as composition, robustness, distribution estimation, and regression learning from interval-valued data. Interval privacy provides a new perspective of human-centric data privacy where individuals have a perceptible, transparent, and simple way of sharing sensitive data.
Computing a maximum independent set (MaxIS) is a fundamental NP-hard problem in graph theory, which has important applications in a wide spectrum of fields. Since graphs in many applications are changing frequently over time, the problem of maintaining a MaxIS over dynamic graphs has attracted increasing attention over the past few years. Due to the intractability of maintaining an exact MaxIS, this paper aims to develop efficient algorithms that can maintain an approximate MaxIS with an accuracy guarantee theoretically. In particular, we propose a framework that maintains a $(\frac{\Delta}{2} + 1)$-approximate MaxIS over dynamic graphs and prove that it achieves a constant approximation ratio in many real-world networks. To the best of our knowledge, this is the first non-trivial approximability result for the dynamic MaxIS problem. Following the framework, we implement an efficient linear-time dynamic algorithm and a more effective dynamic algorithm with near-linear expected time complexity. Our thorough experiments over real and synthetic graphs demonstrate the effectiveness and efficiency of the proposed algorithms, especially when the graph is highly dynamic.
Gaussian process regression is increasingly applied for learning unknown dynamical systems. In particular, the implicit quantification of the uncertainty of the learned model makes it a promising approach for safety-critical applications. When using Gaussian process regression to learn unknown systems, a commonly considered approach consists of learning the residual dynamics after applying some generic discretization technique, which might however disregard properties of the underlying physical system. Variational integrators are a less common yet promising approach to discretization, as they retain physical properties of the underlying system, such as energy conservation and satisfaction of explicit kinematic constraints. In this work, we present a novel structure-preserving learning-based modelling approach that combines a variational integrator for the nominal dynamics of a mechanical system and learning residual dynamics with Gaussian process regression. We extend our approach to systems with known kinematic constraints and provide formal bounds on the prediction uncertainty. The simulative evaluation of the proposed method shows desirable energy conservation properties in accordance with general theoretical results and demonstrates exact constraint satisfaction for constrained dynamical systems.
We study the performance of a phase-noise impaired double reconfigurable intelligent surface (RIS)-aided multiuser (MU) multiple-input single-output (MISO) system under spatial correlation at both RISs and base-station (BS). The downlink achievable rate is derived in closed-form under maximum ratio transmission (MRT) precoding. In addition, we obtain the optimal phase-shift design at both RISs in closed-form for the considered channel and phase-noise models. Numerical results validate the analytical expressions, and highlight the effects of different system parameters on the achievable rate. Our analysis shows that phase-noise can severely degrade the performance when users do not have direct links to both RISs, and can only be served via the double-reflection link. Also, we show that high spatial correlation at RISs is essential for high achievable rates.
Bayesian model selection provides a powerful framework for objectively comparing models directly from observed data, without reference to ground truth data. However, Bayesian model selection requires the computation of the marginal likelihood (model evidence), which is computationally challenging, prohibiting its use in many high-dimensional Bayesian inverse problems. With Bayesian imaging applications in mind, in this work we present the proximal nested sampling methodology to objectively compare alternative Bayesian imaging models for applications that use images to inform decisions under uncertainty. The methodology is based on nested sampling, a Monte Carlo approach specialised for model comparison, and exploits proximal Markov chain Monte Carlo techniques to scale efficiently to large problems and to tackle models that are log-concave and not necessarily smooth (e.g., involving l_1 or total-variation priors). The proposed approach can be applied computationally to problems of dimension O(10^6) and beyond, making it suitable for high-dimensional inverse imaging problems. It is validated on large Gaussian models, for which the likelihood is available analytically, and subsequently illustrated on a range of imaging problems where it is used to analyse different choices of dictionary and measurement model.
One of the most important problems in system identification and statistics is how to estimate the unknown parameters of a given model. Optimization methods and specialized procedures, such as Empirical Minimization (EM) can be used in case the likelihood function can be computed. For situations where one can only simulate from a parametric model, but the likelihood is difficult or impossible to evaluate, a technique known as the Two-Stage (TS) Approach can be applied to obtain reliable parametric estimates. Unfortunately, there is currently a lack of theoretical justification for TS. In this paper, we propose a statistical decision-theoretical derivation of TS, which leads to Bayesian and Minimax estimators. We also show how to apply the TS approach on models for independent and identically distributed samples, by computing quantiles of the data as a first step, and using a linear function as the second stage. The proposed method is illustrated via numerical simulations.
Learning accurate classifiers for novel categories from very few examples, known as few-shot image classification, is a challenging task in statistical machine learning and computer vision. The performance in few-shot classification suffers from the bias in the estimation of classifier parameters; however, an effective underlying bias reduction technique that could alleviate this issue in training few-shot classifiers has been overlooked. In this work, we demonstrate the effectiveness of Firth bias reduction in few-shot classification. Theoretically, Firth bias reduction removes the $O(N^{-1})$ first order term from the small-sample bias of the Maximum Likelihood Estimator. Here we show that the general Firth bias reduction technique simplifies to encouraging uniform class assignment probabilities for multinomial logistic classification, and almost has the same effect in cosine classifiers. We derive an easy-to-implement optimization objective for Firth penalized multinomial logistic and cosine classifiers, which is equivalent to penalizing the cross-entropy loss with a KL-divergence between the uniform label distribution and the predictions. Then, we empirically evaluate that it is consistently effective across the board for few-shot image classification, regardless of (1) the feature representations from different backbones, (2) the number of samples per class, and (3) the number of classes. Finally, we show the robustness of Firth bias reduction, in the case of imbalanced data distribution. Our implementation is available at //github.com/ehsansaleh/firth_bias_reduction