亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we develop a provably energy stable and conservative discontinuous spectral element method for the shifted wave equation in second order form. The proposed method combines the advantages and central ideas of very successful numerical techniques, the summation-by-parts finite difference method, the spectral method and the discontinuous Galerkin method. We prove energy-stability, discrete conservation principle, and derive error estimates in the energy norm for the (1+1)-dimensions shifted wave equation in second order form. The energy-stability results, discrete conservation principle, and the error estimates generalise to multiple dimensions using tensor products of quadrilateral and hexahedral elements. Numerical experiments, in (1+1)-dimensions and (2+1)-dimensions, verify the theoretical results and demonstrate optimal convergence of $L^2$ numerical errors at subsonic, sonic and supersonic regimes.

相關內容

The Bouncy Particle sampler (BPS) and the Zig-Zag sampler (ZZS) are continuous time, non-reversible Monte Carlo methods based on piecewise deterministic Markov processes. Experiments show that the speed of convergence of these samplers can be affected by the shape of the target distribution, as for instance in the case of anisotropic targets. We propose an adaptive scheme that iteratively learns all or part of the covariance matrix of the target and takes advantage of the obtained information to modify the underlying process with the aim of increasing the speed of convergence. Moreover, we define an adaptive scheme that automatically tunes the refreshment rate of the BPS or ZZS. We prove ergodicity and a law of large numbers for all the proposed adaptive algorithms. Finally, we show the benefits of the adaptive samplers with several numerical simulations.

In this work, we study an inverse problem of recovering a space-time dependent diffusion coefficient in the subdiffusion model from the distributed observation, where the mathematical model involves a Djrbashian-Caputo fractional derivative of order $\alpha\in(0,1)$ in time. The main technical challenges of both theoretical and numerical analysis lie in the limited smoothing properties due to the fractional differential operator and the high degree of nonlinearity of the forward map from the unknown diffusion coefficient to the distributed observation. Theoretically, we establish two conditional stability results using a novel test function, which leads to a stability bound in $L^2(0,T;L^2(\Omega))$ under a suitable positivity condition. The positivity condition is verified for a large class of problem data. Numerically, we develop a rigorous procedure for the recovery of the diffusion coefficient based on a regularized least-squares formulation, which is then discretized by the standard Galerkin method with continuous piecewise linear elements in space and backward Euler convolution quadrature in time. We provide a complete error analysis of the fully discrete formulation, by combining several new error estimates for the direct problem (optimal in terms of data regularity), a discrete version of fractional maximal $L^p$ regularity, and a nonstandard energy argument. Under the positivity condition, we obtain a standard $L^2(0,T; L^2(\Omega))$ error estimate consistent with the conditional stability. Further, we illustrate the analysis with some numerical examples.

We study a finite-element based space-time discretisation for the 2D stochastic Navier-Stokes equations in a bounded domain supplemented with no-slip boundary conditions. We prove optimal convergence rates in the energy norm with respect to convergence in probability, that is convergence of order (almost) 1/2 in time and 1 in space. This was previously only known in the space-periodic case, where higher order energy estimates for any given (deterministic) time are available. In contrast to this, in the Dirichlet-case estimates are only known for a (possibly large) stopping time. We overcome this problem by introducing an approach based on discrete stopping times. This replaces the localised estimates (with respect to the sample space) from earlier contributions.

The anisotropic and heterogeneous \texorpdfstring{$N$}{N}-dimensional wave equation, controlled and observed at the boundary, is considered as a port-Hamiltonian system. The recent structure-preserving Partitioned Finite Element Method is applied, leading directly to a finite-dimensional port-Hamiltonian system, and its numerical analysis is done in a general framework, under usual assumptions for finite element. Compatibility conditions are then exhibited to reach the best trade off between the convergence rate and the number of degrees of freedom for both the state error and the Hamiltonian error. Numerical simulations in 2D are performed to illustrate the optimality of the main theorems among several choices of classical finite element families.

In this paper, we study a distributed learning problem constrained by constant communication bits. Specifically, we consider the distributed hypothesis testing (DHT) problem where two distributed nodes are constrained to transmit a constant number of bits to a central decoder. In such cases, we show that in order to achieve the optimal error exponents, it suffices to consider the empirical distributions of observed data sequences and encode them to the transmission bits. With such a coding strategy, we develop a geometric approach in the distribution spaces and characterize the optimal schemes. In particular, we show the optimal achievable error exponents and coding schemes for the following cases: (i) both nodes can transmit $\log_23$ bits; (ii) one of the nodes can transmit $1$ bit, and the other node is not constrained; (iii) the joint distribution of the nodes are conditionally independent given one hypothesis. Furthermore, we provide several numerical examples for illustrating the theoretical results. Our results provide theoretical guidance for designing practical distributed learning rules, and the developed approach also reveals new potentials for establishing error exponents for DHT with more general communication constraints.

Stochastic optimal principle leads to the resolution of a partial differential equation (PDE), namely the Hamilton-Jacobi-Bellman (HJB) equation. In general, this equation cannot be solved analytically, thus numerical algorithms are the only tools to provide accurate approximations. The aims of this paper is to introduce a novel fitted finite volume method to solve high dimensional degenerated HJB equation from stochastic optimal control problems in high dimension ($ n\geq 3$). The challenge here is due to the nature of our HJB equation which is a degenerated second-order partial differential equation coupled with an optimization problem. For such problems, standard scheme such as finite difference method losses its monotonicity and therefore the convergence toward the viscosity solution may not be guarantee. We discretize the HJB equation using the fitted finite volume method, well known to tackle degenerated PDEs, while the time discretisation is performed using the Implicit Euler scheme. We show that matrices resulting from spatial discretization and temporal discretization are M--matrices. Numerical results in finance demonstrating the accuracy of the proposed numerical method comparing to the standard finite difference method are provided.

The maximum norm error estimations for virtual element methods are studied. To establish the error estimations, we prove higher local regularity based on delicate analysis of Green's functions and high-order local error estimations for the partition of the virtual element solutions. The maximum norm of the exact gradient and the gradient of the projection of the virtual element solutions are proved to achieve optimal convergence results. For high-order virtual element methods, we establish the optimal convergence results in $L^{\infty}$ norm. Our theoretical discoveries are validated by a numerical example on general polygonal meshes.

In this paper, we present an interior penalty discontinuous Galerkin finite element scheme for solving diffusion problems with strong anisotropy arising in magnetized plasmas for fusion applications. We demonstrate the accuracy produced by the high-order scheme and develop an efficient preconditioning technique to solve the corresponding linear system, which is robust to the mesh size and anisotropy of the problem. Several numerical tests are provided to validate the accuracy and efficiency of the proposed algorithm.

In this paper, we use an implicit two-derivative deferred correction time discretization approach and combine it with a spatial discretization of the discontinuous Galerkin spectral element method to solve (non-)linear PDEs. The resulting numerical method is high order accurate in space and time. As the novel scheme handles two time derivatives, the spatial operator for both derivatives has to be defined. This results in an extended system matrix of the scheme. We analyze this matrix regarding possible simplifications and an efficient way to solve the arising (non-)linear system of equations. It is shown how a carefully designed preconditioner and a matrix-free approach allow for an efficient implementation and application of the novel scheme. For both, linear advection and the compressible Euler equations, up to eighth order of accuracy in time is shown. Finally, it is illustrated how the method can be used to approximate solutions to the compressible Navier-Stokes equations.

The eigendeomposition of nearest-neighbor (NN) graph Laplacian matrices is the main computational bottleneck in spectral clustering. In this work, we introduce a highly-scalable, spectrum-preserving graph sparsification algorithm that enables to build ultra-sparse NN (u-NN) graphs with guaranteed preservation of the original graph spectrums, such as the first few eigenvectors of the original graph Laplacian. Our approach can immediately lead to scalable spectral clustering of large data networks without sacrificing solution quality. The proposed method starts from constructing low-stretch spanning trees (LSSTs) from the original graphs, which is followed by iteratively recovering small portions of "spectrally critical" off-tree edges to the LSSTs by leveraging a spectral off-tree embedding scheme. To determine the suitable amount of off-tree edges to be recovered to the LSSTs, an eigenvalue stability checking scheme is proposed, which enables to robustly preserve the first few Laplacian eigenvectors within the sparsified graph. Additionally, an incremental graph densification scheme is proposed for identifying extra edges that have been missing in the original NN graphs but can still play important roles in spectral clustering tasks. Our experimental results for a variety of well-known data sets show that the proposed method can dramatically reduce the complexity of NN graphs, leading to significant speedups in spectral clustering.

北京阿比特科技有限公司