In this paper, we use an implicit two-derivative deferred correction time discretization approach and combine it with a spatial discretization of the discontinuous Galerkin spectral element method to solve (non-)linear PDEs. The resulting numerical method is high order accurate in space and time. As the novel scheme handles two time derivatives, the spatial operator for both derivatives has to be defined. This results in an extended system matrix of the scheme. We analyze this matrix regarding possible simplifications and an efficient way to solve the arising (non-)linear system of equations. It is shown how a carefully designed preconditioner and a matrix-free approach allow for an efficient implementation and application of the novel scheme. For both, linear advection and the compressible Euler equations, up to eighth order of accuracy in time is shown. Finally, it is illustrated how the method can be used to approximate solutions to the compressible Navier-Stokes equations.
A new scheme is presented for imposing periodic boundary conditions on unit cells with arbitrary source distributions. We restrict our attention here to the Poisson, modified Helmholtz, Stokes and modified Stokes equations. The approach extends to the oscillatory equations of mathematical physics, including the Helmholtz and Maxwell equations, but we will address these in a companion paper, since the nature of the problem is somewhat different and includes the consideration of quasiperiodic boundary conditions and resonances. Unlike lattice sum-based methods, the scheme is insensitive to the unit cell's aspect ratio and is easily coupled to adaptive fast multipole methods (FMMs). Our analysis relies on classical "plane-wave" representations of the fundamental solution, and yields an explicit low-rank representation of the field due to all image sources beyond the first layer of neighboring unit cells. When the aspect ratio of the unit cell is large, our scheme can be coupled with the nonuniform fast Fourier transform (NUFFT) to accelerate the evaluation of the induced field. Its performance is illustrated with several numerial examples.
In this paper, we apply the self-attention from the state-of-the-art Transformer in Attention Is All You Need for the first time to a data-driven operator learning problem related to partial differential equations. An effort is put together to explain the heuristics of, and to improve the efficacy of the attention mechanism. By employing the operator approximation theory in Hilbert spaces, it is demonstrated for the first time that the softmax normalization in the scaled dot-product attention is sufficient but not necessary. Without softmax, the approximation capacity of a linearized Transformer variant can be proved to be comparable to a Petrov-Galerkin projection layer-wise, and the estimate is independent with respect to the sequence length. A new layer normalization scheme mimicking the Petrov-Galerkin projection is proposed to allow a scaling to propagate through attention layers, which helps the model achieve remarkable accuracy in operator learning tasks with unnormalized data. Finally, we present three operator learning experiments, including the viscid Burgers' equation, an interface Darcy flow, and an inverse interface coefficient identification problem. The newly proposed simple attention-based operator learner, Galerkin Transformer, shows significant improvements in both training cost and evaluation accuracy over its softmax-normalized counterparts.
Estimating the volume of a convex body is a central problem in convex geometry and can be viewed as a continuous version of counting. We present a quantum algorithm that estimates the volume of an $n$-dimensional convex body within multiplicative error $\epsilon$ using $\tilde{O}(n^{3}+n^{2.5}/\epsilon)$ queries to a membership oracle and $\tilde{O}(n^{5}+n^{4.5}/\epsilon)$ additional arithmetic operations. For comparison, the best known classical algorithm uses $\tilde{O}(n^{4}+n^{3}/\epsilon^{2})$ queries and $\tilde{O}(n^{6}+n^{5}/\epsilon^{2})$ additional arithmetic operations. To the best of our knowledge, this is the first quantum speedup for volume estimation. Our algorithm is based on a refined framework for speeding up simulated annealing algorithms that might be of independent interest. This framework applies in the setting of "Chebyshev cooling", where the solution is expressed as a telescoping product of ratios, each having bounded variance. We develop several novel techniques when implementing our framework, including a theory of continuous-space quantum walks with rigorous bounds on discretization error. To complement our quantum algorithms, we also prove that volume estimation requires $\Omega(\sqrt n+1/\epsilon)$ quantum membership queries, which rules out the possibility of exponential quantum speedup in $n$ and shows optimality of our algorithm in $1/\epsilon$ up to poly-logarithmic factors.
GenEO ('Generalised Eigenvalue problems on the Overlap') is a method for computing an operator-dependent spectral coarse space to be combined with local solves on subdomains to form a robust parallel domain decomposition preconditioner for elliptic PDEs. It has previously been proved, in the self-adjoint and positive-definite case, that this method, when used as a preconditioner for conjugate gradients, yields iteration numbers which are completely independent of the heterogeneity of the coefficient field of the partial differential operator. We extend this theory to the case of convection-diffusion-reaction problems, which may be non-self-adjoint and indefinite, and whose discretisations are solved with preconditioned GMRES. The GenEO coarse space is defined here using a generalised eigenvalue problem based on a self-adjoint and positive-definite subproblem. We obtain GMRES iteration counts which are independent of the variation of the coefficient of the diffusion term in the operator and depend only very mildly on the variation of the other coefficients. While the iteration number estimates do grow as the non-self-adjointness and indefiniteness of the operator increases, practical tests indicate the deterioration is much milder. Thus we obtain an iterative solver which is efficient in parallel and very effective for a wide range of convection-diffusion-reaction problems.
We construct a space-time parallel method for solving parabolic partial differential equations by coupling the Parareal algorithm in time with overlapping domain decomposition in space. Reformulating the original Parareal algorithm as a variational method and implementing a finite element discretization in space enables an adjoint-based a posteriori error analysis to be performed. Through an appropriate choice of adjoint problems and residuals the error analysis distinguishes between errors arising due to the temporal and spatial discretizations, as well as between the errors arising due to incomplete Parareal iterations and incomplete iterations of the domain decomposition solver. We first develop an error analysis for the Parareal method applied to parabolic partial differential equations, and then refine this analysis to the case where the associated spatial problems are solved using overlapping domain decomposition. These constitute our Time Parallel Algorithm (TPA) and Space-Time Parallel Algorithm (STPA) respectively. Numerical experiments demonstrate the accuracy of the estimator for both algorithms and the iterations between distinct components of the error.
We study the discretization of a linear evolution partial differential equation when its Green function is known. We provide error estimates both for the spatial approximation and for the time stepping approximation. We show that, in fact, an approximation of the Green function is almost as good as the Green function itself. For suitable time-dependent parabolic equations, we explain how to obtain good, explicit approximations of the Green function using the Dyson-Taylor commutator method (DTCM) that we developed in J. Math. Phys. (2010). This approximation for short time, when combined with a bootstrap argument, gives an approximate solution on any fixed time interval within any prescribed tolerance.
We present and implement an algorithm for computing the invariant circle and the corresponding stable manifolds for 2-dimensional maps. The algorithm is based on the parameterization method, and it is backed up by an a-posteriori theorem established in [YdlL21]. The algorithm works irrespective of whether the internal dynamics in the invariant circle is a rotation or it is phase-locked. The algorithm converges quadratically and the number of operations and memory requirements for each step of the iteration is linear with respect to the size of the discretization. We also report on the result of running the implementation in some standard models to uncover new phenomena. In particular, we explored a bundle merging scenario in which the invariant circle loses hyperbolicity because the angle between the stable directions and the tangent becomes zero even if the rates of contraction are separated. We also discuss and implement a generalization of the algorithm to 3 dimensions, and implement it on the 3-dimensional Fattened Arnold Family (3D-FAF) map with non-resonant eigenvalues and present numerical results.
The Restricted Additive Schwarz method with impedance transmission conditions, also known as the Optimised Restricted Additive Schwarz (ORAS) method, is a simple overlapping one-level parallel domain decomposition method, which has been successfully used as an iterative solver and as a preconditioner for discretized Helmholtz boundary-value problems. In this paper, we give, for the first time, a convergence analysis for ORAS as an iterative solver -- and also as a preconditioner -- for nodal finite element Helmholtz systems of any polynomial order. The analysis starts by showing (for general domain decompositions) that ORAS as an unconventional finite element approximation of a classical parallel iterative Schwarz method, formulated at the PDE (non-discrete) level. This non-discrete Schwarz method was recently analysed in [Gong, Gander, Graham, Lafontaine, Spence, arXiv 2106.05218], and the present paper gives a corresponding discrete version of this analysis. In particular, for domain decompositions in strips in 2-d, we show that, when the mesh size is small enough, ORAS inherits the convergence properties of the Schwarz method, independent of polynomial order. The proof relies on characterising the ORAS iteration in terms of discrete `impedance-to-impedance maps', which we prove (via a novel weighted finite-element error analysis) converge as $h\rightarrow 0$ in the operator norm to their non-discrete counterparts.
In this paper we present a finite element analysis for a Dirichlet boundary control problem governed by the Stokes equation. The Dirichlet control is considered in a convex closed subset of the energy space $\mathbf{H}^1(\Omega).$ Most of the previous works on the Stokes Dirichlet boundary control problem deals with either tangential control or the case where the flux of the control is zero. This choice of the control is very particular and their choice of the formulation leads to the control with limited regularity. To overcome this difficulty, we introduce the Stokes problem with outflow condition and the control acts on the Dirichlet boundary only hence our control is more general and it has both the tangential and normal components. We prove well-posedness and discuss on the regularity of the control problem. The first-order optimality condition for the control leads to a Signorini problem. We develop a two-level finite element discretization by using $\mathbf{P}_1$ elements(on the fine mesh) for the velocity and the control variable and $P_0$ elements (on the coarse mesh) for the pressure variable. The standard energy error analysis gives $\frac{1}{2}+\frac{\delta}{2}$ order of convergence when the control is in $\mathbf{H}^{\frac{3}{2}+\delta}(\Omega)$ space. Here we have improved it to $\frac{1}{2}+\delta,$ which is optimal. Also, when the control lies in less regular space we derived optimal order of convergence up to the regularity. The theoretical results are corroborated by a variety of numerical tests.
In numerical simulations of complex flows with discontinuities, it is necessary to use nonlinear schemes. The spectrum of the scheme used have a significant impact on the resolution and stability of the computation. Based on the approximate dispersion relation method, we combine the corresponding spectral property with the dispersion relation preservation proposed by De and Eswaran (J. Comput. Phys. 218 (2006) 398-416) and propose a quasi-linear dispersion relation preservation (QL-DRP) analysis method, through which the group velocity of the nonlinear scheme can be determined. In particular, we derive the group velocity property when a high-order Runge-Kutta scheme is used and compare the performance of different time schemes with QL-DRP. The rationality of the QL-DRP method is verified by a numerical simulation and the discrete Fourier transform method. To further evaluate the performance of a nonlinear scheme in finding the group velocity, new hyperbolic equations are designed. The validity of QL-DRP and the group velocity preservation of several schemes are investigated using two examples of the equation for one-dimensional wave propagation and the new hyperbolic equations. The results show that the QL-DRP method integrated with high-order time schemes can determine the group velocity for nonlinear schemes and evaluate their performance reasonably and efficiently.