亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study quantum algorithms for several fundamental string problems, including Longest Common Substring, Lexicographically Minimal String Rotation, and Longest Square Substring. These problems have been widely studied in the stringology literature since the 1970s, and are known to be solvable by near-linear time classical algorithms. In this work, we give quantum algorithms for these problems with near-optimal query complexities and time complexities. Specifically, we show that: - Longest Common Substring can be solved by a quantum algorithm in $\tilde O(n^{2/3})$ time, improving upon the recent $\tilde O(n^{5/6})$-time algorithm by Le Gall and Seddighin (2020). Our algorithm uses the MNRS quantum walk framework, together with a careful combination of string synchronizing sets (Kempa and Kociumaka, 2019) and generalized difference covers. - Lexicographically Minimal String Rotation can be solved by a quantum algorithm in $n^{1/2 + o(1)}$ time, improving upon the recent $\tilde O(n^{3/4})$-time algorithm by Wang and Ying (2020). We design our algorithm by first giving a new classical divide-and-conquer algorithm in near-linear time based on exclusion rules, and then speeding it up quadratically using nested Grover search and quantum minimum finding. - Longest Square Substring can be solved by a quantum algorithm in $\tilde O(\sqrt{n})$ time. Our algorithm is an adaptation of the algorithm by Le Gall and Seddighin (2020) for the Longest Palindromic Substring problem, but uses additional techniques to overcome the difficulty that binary search no longer applies. Our techniques naturally extend to other related string problems, such as Longest Repeated Substring, Longest Lyndon Substring, and Minimal Suffix.

相關內容

We show how to translate a subset of RISC-V machine code compiled from a subset of C to quadratic unconstrained binary optimization (QUBO) models that may be solved by a quantum annealing machine: given a bound $n$, there is input $I$ to a program $P$ such that $P$ runs into a given program state $E$ executing no more than $n$ machine instructions if and only if the QUBO model of $P$ for $n$ evaluates to 0 on $I$. Thus, with more qubits on the machine than variables in the QUBO model, quantum annealing the model reaches 0 (ground) energy in constant time with high probability on some input $I$ that is part of the ground state if and only if $P$ runs into $E$ on $I$ executing no more than $n$ instructions. Translation takes $\mathcal{O}(n^2)$ time effectively turning a quantum annealer into a polynomial-time symbolic execution engine and bounded model checker, eliminating their path and state explosion problems. Here, we take advantage of the fact that any machine instruction may only increase the size of the program state by a constant amount of bits. Translation time comes down from $\mathcal{O}(n^2)$ to $\mathcal{O}(n)$ if memory consumption of $P$ is bounded by a constant, establishing a linear (quadratic) upper bound on quantum space, in number of qubits on a quantum annealer, in terms of algorithmic time (space) in classical computing. The construction provides a non-relativizing argument for $NP\subseteq BQP$, without violating the optimality of Grover's algorithm, also on gate-model quantum machines, and motivates a temporal and spatial metric of quantum advantage. Our prototypical open-source toolchain translates machine code that runs on real RISC-V hardware to models that can be solved by real quantum annealing hardware, as shown in our experiments.

The locality of a graph problem is the smallest distance $T$ such that each node can choose its own part of the solution based on its radius-$T$ neighborhood. In many settings, a graph problem can be solved efficiently with a distributed or parallel algorithm if and only if it has a small locality. In this work we seek to automate the study of solvability and locality: given the description of a graph problem $\Pi$, we would like to determine if $\Pi$ is solvable and what is the asymptotic locality of $\Pi$ as a function of the size of the graph. Put otherwise, we seek to automatically synthesize efficient distributed and parallel algorithms for solving $\Pi$. We focus on locally checkable graph problems; these are problems in which a solution is globally feasible if it looks feasible in all constant-radius neighborhoods. Prior work on such problems has brought primarily bad news: questions related to locality are undecidable in general, and even if we focus on the case of labeled paths and cycles, determining locality is $\mathsf{PSPACE}$-hard (Balliu et al., PODC 2019). We complement prior negative results with efficient algorithms for the cases of unlabeled paths and cycles and, as an extension, for rooted trees. We introduce a new automata-theoretic perspective for studying locally checkable graph problems. We represent a locally checkable problem $\Pi$ as a nondeterministic finite automaton $\mathcal{M}$ over a unary alphabet. We identify polynomial-time-computable properties of the automaton $\mathcal{M}$ that near-completely capture the solvability and locality of $\Pi$ in cycles and paths, with the exception of one specific case that is $\mbox{co-$\mathsf{NP}$}$-complete.

The security of code based constructions is usually assessed by Information Set Decoding (ISD) algorithms. In the quantum setting, amplitude amplification yields an asymptotic square root gain over the classical analogue. However, it is still unclear whether a real quantum circuit could yield actual improvements or suffer an enormous overhead due to its implementation. This leads to different considerations of these quantum attacks in the security analysis of code based proposals. In this work we clarify this doubt by giving the first quantum circuit design of the fully-fledged ISD procedure, an implementation in the quantum simulation library Qibo as well as precise estimates of its complexities. We show that against common belief, Prange's ISD algorithm can be implemented rather efficiently on a quantum computer, namely with only a logarithmic overhead in circuit depth compared to a classical implementation. As another major contribution, we leverage the idea of classical co-processors to design hybrid classical-quantum trade-offs, that allow to tailor the necessary qubits to any available amount, while still providing quantum speedups. Interestingly, when constraining the width of the circuit instead of its depth we are able to overcome previous optimality results on constraint quantum search.

We study solution methods for (strongly-)convex-(strongly)-concave Saddle-Point Problems (SPPs) over networks of two type - master/workers (thus centralized) architectures and meshed (thus decentralized) networks. The local functions at each node are assumed to be similar, due to statistical data similarity or otherwise. We establish lower complexity bounds for a fairly general class of algorithms solving the SPP. We show that a given suboptimality $\epsilon>0$ is achieved over master/workers networks in $\Omega\big(\Delta\cdot \delta/\mu\cdot \log (1/\varepsilon)\big)$ rounds of communications, where $\delta>0$ measures the degree of similarity of the local functions, $\mu$ is their strong convexity constant, and $\Delta$ is the diameter of the network. The lower communication complexity bound over meshed networks reads $\Omega\big(1/{\sqrt{\rho}} \cdot {\delta}/{\mu}\cdot\log (1/\varepsilon)\big)$, where $\rho$ is the (normalized) eigengap of the gossip matrix used for the communication between neighbouring nodes. We then propose algorithms matching the lower bounds over either types of networks (up to log-factors). We assess the effectiveness of the proposed algorithms on a robust logistic regression problem.

With the advent of real-world quantum computing, the idea that parametrized quantum computations can be used as hypothesis families in a quantum-classical machine learning system is gaining increasing traction. Such hybrid systems have already shown the potential to tackle real-world tasks in supervised and generative learning, and recent works have established their provable advantages in special artificial tasks. Yet, in the case of reinforcement learning, which is arguably most challenging and where learning boosts would be extremely valuable, no proposal has been successful in solving even standard benchmarking tasks, nor in showing a theoretical learning advantage over classical algorithms. In this work, we achieve both. We propose a hybrid quantum-classical reinforcement learning model using very few qubits, which we show can be effectively trained to solve several standard benchmarking environments. Moreover, we demonstrate, and formally prove, the ability of parametrized quantum circuits to solve certain learning tasks that are intractable for classical models, including current state-of-art deep neural networks, under the widely-believed classical hardness of the discrete logarithm problem.

We prove new bounds on the distributed fractional coloring problem in the LOCAL model. Fractional $c$-colorings can be understood as multicolorings as follows. For some natural numbers $p$ and $q$ such that $p/q\leq c$, each node $v$ is assigned a set of at least $q$ colors from $\{1,\dots,p\}$ such that adjacent nodes are assigned disjoint sets of colors. The minimum $c$ for which a fractional $c$-coloring of a graph $G$ exists is called the fractional chromatic number $\chi_f(G)$ of $G$. Recently, [Bousquet, Esperet, and Pirot; SIROCCO '21] showed that for any constant $\epsilon>0$, a fractional $(\Delta+\epsilon)$-coloring can be computed in $\Delta^{O(\Delta)} + O(\Delta\cdot\log^* n)$ rounds. We show that such a coloring can be computed in only $O(\log^2 \Delta)$ rounds, without any dependency on $n$. We further show that in $O\big(\frac{\log n}{\epsilon}\big)$ rounds, it is possible to compute a fractional $(1+\epsilon)\chi_f(G)$-coloring, even if the fractional chromatic number $\chi_f(G)$ is not known. That is, this problem can be approximated arbitrarily well by an efficient algorithm in the LOCAL model. For the standard coloring problem, it is only known that an $O\big(\frac{\log n}{\log\log n}\big)$-approximation can be computed in polylogarithmic time in the LOCAL model. We also show that our distributed fractional coloring approximation algorithm is best possible. We show that in trees, which have fractional chromatic number $2$, computing a fractional $(2+\epsilon)$-coloring requires at least $\Omega\big(\frac{\log n}{\epsilon}\big)$ rounds. We finally study fractional colorings of regular grids. In [Bousquet, Esperet, and Pirot; SIROCCO '21], it is shown that in regular grids of bounded dimension, a fractional $(2+\epsilon)$-coloring can be computed in time $O(\log^* n)$. We show that such a coloring can even be computed in $O(1)$ rounds in the LOCAL model.

The Hilbert metric is a distance function defined for points lying within a convex body. It generalizes the Cayley-Klein model of hyperbolic geometry to any convex set, and it has numerous applications in the analysis and processing of convex bodies. In this paper, we study the geometric and combinatorial properties of the Voronoi diagram of a set of point sites under the Hilbert metric. Given any convex polygon $K$ bounded by $m$ sides, we present two algorithms (one randomized and one deterministic) for computing the Voronoi diagram of an $n$-element point set in the Hilbert metric induced by $K$. Our randomized algorithm runs in $O(m n + n (\log n)(\log m n))$ expected time, and our deterministic algorithm runs in time $O(m n \log n)$. Both algorithms use $O(m n)$ space. We show that the worst-case combinatorial complexity of the Voronoi diagram is $\Theta(m n)$.

We study semidefinite programs with diagonal constraints. This problem class appears in combinatorial optimization and has a wide range of engineering applications such as in circuit design, channel assignment in wireless networks, phase recovery, covariance matrix estimation, and low-order controller design. In this paper, we give an algorithm to solve this problem to $\varepsilon$-accuracy, with a run time of $\widetilde{\mathcal{O}}(m/\varepsilon^{3.5})$, where $m$ is the number of non-zero entries in the cost matrix. We improve upon the previous best run time of $\widetilde{\mathcal{O}}(m/\varepsilon^{4.5})$ by Arora and Kale. As a corollary of our result, given an instance of the Max-Cut problem with $n$ vertices and $m \gg n$ edges, our algorithm when applied to the standard SDP relaxation of Max-Cut returns a $(1 - \varepsilon)\alpha_{GW}$ cut in time $\widetilde{\mathcal{O}}(m/\varepsilon^{3.5})$, where $\alpha_{GW} \approx 0.878567$ is the Goemans-Williamson approximation ratio. We obtain this run time via the stochastic variance reduction framework applied to the Arora-Kale algorithm, by constructing a constant-accuracy estimator to maintain the primal iterates.

Quantum hardware and quantum-inspired algorithms are becoming increasingly popular for combinatorial optimization. However, these algorithms may require careful hyperparameter tuning for each problem instance. We use a reinforcement learning agent in conjunction with a quantum-inspired algorithm to solve the Ising energy minimization problem, which is equivalent to the Maximum Cut problem. The agent controls the algorithm by tuning one of its parameters with the goal of improving recently seen solutions. We propose a new Rescaled Ranked Reward (R3) method that enables stable single-player version of self-play training that helps the agent to escape local optima. The training on any problem instance can be accelerated by applying transfer learning from an agent trained on randomly generated problems. Our approach allows sampling high-quality solutions to the Ising problem with high probability and outperforms both baseline heuristics and a black-box hyperparameter optimization approach.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司