Context: The constant growth of primary evidence and Systematic Literature Reviews (SLRs) publications in the Software Engineering (SE) field leads to the need for SLR Updates. However, searching and selecting evidence for SLR updates demands significant effort from SE researchers. Objective: We present emerging results on an automated approach to support searching and selecting studies for SLR updates in SE. Method: We developed an automated tool prototype to perform the snowballing search technique and support selecting relevant studies for SLR updates using Machine Learning (ML) algorithms. We evaluated our automation proposition through a small-scale evaluation with a reliable dataset from an SLR replication and its update. Results: Effectively automating snowballing-based search strategies showed feasibility with minor losses, specifically related to papers without Digital Object Identifier (DOI). The ML algorithm giving the highest performance to select studies for SLR updates was Linear Support Vector Machine, with approximately 74% recall and 15% precision. Using such algorithms with conservative thresholds to minimize the risk of missing papers can significantly reduce evidence selection efforts. Conclusion: The preliminary results of our evaluation point in promising directions, indicating the potential of automating snowballing search efforts and of reducing the number of papers to be manually analyzed by about 2.5 times when selecting evidence for updating SLRs in SE.
We present a historical outline of the research and developments of Virtual Reality at the Fraunhofer Institute for Computer Graphics (IGD) in Darmstadt, Germany, from 1990 through 2000.
We present UTDUSS, the UTokyo-SaruLab system submitted to Interspeech2024 Speech Processing Using Discrete Speech Unit Challenge. The challenge focuses on using discrete speech unit learned from large speech corpora for some tasks. We submitted our UTDUSS system to two text-to-speech tracks: Vocoder and Acoustic+Vocoder. Our system incorporates neural audio codec (NAC) pre-trained on only speech corpora, which makes the learned codec represent rich acoustic features that are necessary for high-fidelity speech reconstruction. For the acoustic+vocoder track, we trained an acoustic model based on Transformer encoder-decoder that predicted the pre-trained NAC tokens from text input. We describe our strategies to build these models, such as data selection, downsampling, and hyper-parameter tuning. Our system ranked in second and first for the Vocoder and Acoustic+Vocoder tracks, respectively.
The paper proposes a novel problem in multi-class Multiple-Instance Learning (MIL) called Learning from the Majority Label (LML). In LML, the majority class of instances in a bag is assigned as the bag's label. LML aims to classify instances using bag-level majority classes. This problem is valuable in various applications. Existing MIL methods are unsuitable for LML due to aggregating confidences, which may lead to inconsistency between the bag-level label and the label obtained by counting the number of instances for each class. This may lead to incorrect instance-level classification. We propose a counting network trained to produce the bag-level majority labels estimated by counting the number of instances for each class. This led to the consistency of the majority class between the network outputs and one obtained by counting the number of instances. Experimental results show that our counting network outperforms conventional MIL methods on four datasets The code is publicly available at //github.com/Shiku-Kaito/Counting-Network-for-Learning-from-Majority-Label.
The 6TiSCH protocol stack was proposed to ensure high-performance communications in the Industrial Internet of Things (IIoT). However, the lack of sufficient time slots for nodes outside the 6TiSCH's Destination Oriented Directed Acyclic Graph (DODAG) to transmit their Destination Advertisement Object (DAO) messages and cell reservation requests significantly hinders their integration into the DODAG. This oversight not only prolongs the device's join time but also increases energy consumption during the network formation phase. Moreover, challenges emerge due to the substantial number of control packets employed by both the 6TiSCH Scheduling Function (SF) and routing protocol (RPL), thus draining more energy resources, increasing medium contention, and decreasing spatial reuse. Furthermore, an SF that overlooks previously allocated slots when assigning new ones to the same node may increase jitter, and more complications ensue when it neglects the state of the TSCH queue, thus leading to packet dropping due to queue saturation. Additional complexity arises when the RPL disregards the new parent's schedule saturation during parent switching, which results in inefficient energy and time usage. To address these issues, we introduce in this paper novel mechanisms, strategically situated at the intersection of SF and RPL that are designed to balance the control packet distribution and adaptively manage parent switching. Our proposal, implemented within the 6TiSCH simulator, demonstrates significant improvements across vital performance metrics, such as node's joining time, jitter, latency, energy consumption, and amount of traffic, in comparison to the conventional 6TiSCH benchmark.
The paper considers the characteristics of the energy budget for mobile base stations (BSs) in the form of Unmanned Aerial Vehicles (UAVs) equipped with Radio Frequency (RF) transceivers, Intelligent Reconfigurable Surfaces (IRSs), and Renewable Energy Sources (RESs). The obtained results highlight the benefits and challenges related to using the aforementioned mobile base stations from the energy side. The research cases took into account two types of UAV devices - multirotor and fixed-wing (airplane-like).
We combine the effectiveness of Reinforcement Learning (RL) and the efficiency of Imitation Learning (IL) in the context of vision-based, autonomous drone racing. We focus on directly processing visual input without explicit state estimation. While RL offers a general framework for learning complex controllers through trial and error, it faces challenges regarding sample efficiency and computational demands due to the high dimensionality of visual inputs. Conversely, IL demonstrates efficiency in learning from visual demonstrations but is limited by the quality of those demonstrations and faces issues like covariate shift. To overcome these limitations, we propose a novel training framework combining RL and IL's advantages. Our framework involves three stages: initial training of a teacher policy using privileged state information, distilling this policy into a student policy using IL, and performance-constrained adaptive RL fine-tuning. Our experiments in both simulated and real-world environments demonstrate that our approach achieves superior performance and robustness than IL or RL alone in navigating a quadrotor through a racing course using only visual information without explicit state estimation.
This study tackles the efficient estimation of Kullback-Leibler (KL) Divergence in Dirichlet Mixture Models (DMM), crucial for clustering compositional data. Despite the significance of DMMs, obtaining an analytically tractable solution for KL Divergence has proven elusive. Past approaches relied on computationally demanding Monte Carlo methods, motivating our introduction of a novel variational approach. Our method offers a closed-form solution, significantly enhancing computational efficiency for swift model comparisons and robust estimation evaluations. Validation using real and simulated data showcases its superior efficiency and accuracy over traditional Monte Carlo-based methods, opening new avenues for rapid exploration of diverse DMM models and advancing statistical analyses of compositional data.
This paper presents an exhaustive quantitative and qualitative evaluation of Large Language Models (LLMs) for Knowledge Graph (KG) construction and reasoning. We employ eight distinct datasets that encompass aspects including entity, relation and event extraction, link prediction, and question answering. Empirically, our findings suggest that GPT-4 outperforms ChatGPT in the majority of tasks and even surpasses fine-tuned models in certain reasoning and question-answering datasets. Moreover, our investigation extends to the potential generalization ability of LLMs for information extraction, which culminates in the presentation of the Virtual Knowledge Extraction task and the development of the VINE dataset. Drawing on these empirical findings, we further propose AutoKG, a multi-agent-based approach employing LLMs for KG construction and reasoning, which aims to chart the future of this field and offer exciting opportunities for advancement. We anticipate that our research can provide invaluable insights for future undertakings of KG\footnote{Code and datasets will be available in //github.com/zjunlp/AutoKG.
We study the problem of incorporating prior knowledge into a deep Transformer-based model,i.e.,Bidirectional Encoder Representations from Transformers (BERT), to enhance its performance on semantic textual matching tasks. By probing and analyzing what BERT has already known when solving this task, we obtain better understanding of what task-specific knowledge BERT needs the most and where it is most needed. The analysis further motivates us to take a different approach than most existing works. Instead of using prior knowledge to create a new training task for fine-tuning BERT, we directly inject knowledge into BERT's multi-head attention mechanism. This leads us to a simple yet effective approach that enjoys fast training stage as it saves the model from training on additional data or tasks other than the main task. Extensive experiments demonstrate that the proposed knowledge-enhanced BERT is able to consistently improve semantic textual matching performance over the original BERT model, and the performance benefit is most salient when training data is scarce.
Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.