The performance of cooperative ambient backscatter communications (CABC) can be enhanced by employing reconfigurable intelligent surface (RIS) to assist backscatter transmitters. Since the RIS power consumption is a non-negligible issue, we consider a RIS assisted CABC system where the RIS with energy harvesting circuit can not only reflect signal but also harvest wireless energy. We study a transmission design problem to minimize the RIS power consumption with the quality of service constraints for both active and backscatter transmissions. The optimization problem is a mixed-integer non-convex programming problem which is NP-hard. To tackle it, an algorithm is proposed by employing the block coordinate descent, semidefinite relaxation and alternating direction method of multipliers techniques. Simulation results demonstrate the effectiveness of the proposed algorithm.
In this work, we propose a Physics-Informed Deep Diffusion magnetic resonance imaging (DWI) reconstruction method (PIDD). PIDD contains two main components: The multi-shot DWI data synthesis and a deep learning reconstruction network. For data synthesis, we first mathematically analyze the motion during the multi-shot data acquisition and approach it by a simplified physical motion model. The motion model inspires a polynomial model for motion-induced phase synthesis. Then, lots of synthetic phases are combined with a few real data to generate a large amount of training data. For reconstruction network, we exploit the smoothness property of each shot image phase as learnable convolution kernels in the k-space and complementary sparsity in the image domain. Results on both synthetic and in vivo brain data show that, the proposed PIDD trained on synthetic data enables sub-second ultra-fast, high-quality, and robust reconstruction with different b-values and undersampling patterns.
Communication and computation are often viewed as separate tasks. This approach is very effective from the perspective of engineering as isolated optimizations can be performed. On the other hand, there are many cases where the main interest is a function of the local information at the devices instead of the local information itself. For such scenarios, information theoretical results show that harnessing the interference in a multiple-access channel for computation, i.e., over-the-air computation (OAC), can provide a significantly higher achievable computation rate than the one with the separation of communication and computation tasks. Besides, the gap between OAC and separation in terms of computation rate increases with more participating nodes. Given this motivation, in this study, we provide a comprehensive survey on practical OAC methods. After outlining fundamentals related to OAC, we discuss the available OAC schemes with their pros and cons. We then provide an overview of the enabling mechanisms and relevant metrics to achieve reliable computation in the wireless channel. Finally, we summarize the potential applications of OAC and point out some future directions.
Decentralized optimization is increasingly popular in machine learning for its scalability and efficiency. Intuitively, it should also provide better privacy guarantees, as nodes only observe the messages sent by their neighbors in the network graph. But formalizing and quantifying this gain is challenging: existing results are typically limited to Local Differential Privacy (LDP) guarantees that overlook the advantages of decentralization. In this work, we introduce pairwise network differential privacy, a relaxation of LDP that captures the fact that the privacy leakage from a node $u$ to a node $v$ may depend on their relative position in the graph. We then analyze the combination of local noise injection with (simple or randomized) gossip averaging protocols on fixed and random communication graphs. We also derive a differentially private decentralized optimization algorithm that alternates between local gradient descent steps and gossip averaging. Our results show that our algorithms amplify privacy guarantees as a function of the distance between nodes in the graph, matching the privacy-utility trade-off of the trusted curator, up to factors that explicitly depend on the graph topology. Finally, we illustrate our privacy gains with experiments on synthetic and real-world datasets.
Communication in poor network environment is always a difficult problem, since troubles such as bit errors and packet loss may often occur. It is generally believed that it is impossible to transmit data both accurately and efficiently in this case. However, this paper provides a method to transmit data efficiently on the line where bit error may occur by utilizing Hamming code principle. If the sender adds a small amount of redundant data to the data to be sent, the receiver can self-correct them when an error is detected. This approach takes advantage of the value of packets with errors, which should have been discarded, reduce the number of re-transmissions and improve transmission efficiency. Based on this method, this paper designs a custom protocol which works in the data link layer and network layer. Finally, this paper verifies the protocol through mathematical simulation.
Delay alignment modulation (DAM) is a promising technology to achieve ISI-free wideband communication, by leveraging delay compensation and path-based beamforming, rather than the conventional channel equalization or multi-carrier transmission. In particular, when there exist a few strong time-dispersive channel paths, DAM can effectively align different propagation delays and achieve their constructive superposition, thus especially appealing for intelligent reflecting surfaces (IRSs)-aided communications with controllable multi-paths. In this paper, we apply DAM to multi-IRS aided wideband communication and study its practical design and achievable performance. We first provide an asymptotic analysis showing that when the number of base station (BS) antennas is much larger than that of IRSs, an ISI-free channel can be established with appropriate delay pre-compensation and the simple path-based MRT beamforming. We then consider the general system setup and study the problem of joint path-based beamforming and phase shifts design for DAM transmission, by considering the three classical beamforming techniques on a per-path basis, namely the low-complexity path-based MRT beamforming, the path-based ZF beamforming for ISI-free DAM communication, and the optimal path-based MMSE beamforming. As a comparison, OFDM-based multi-IRS aided communication is considered. Simulation results demonstrate that DAM outperforms OFDM in terms of spectral efficiency, BER, and PAPR.
Large, curated datasets are required to leverage speech-based tools in healthcare. These are costly to produce, resulting in increased interest in data sharing. As speech can potentially identify speakers (i.e., voiceprints), sharing recordings raises privacy concerns. We examine the re-identification risk for speech recordings, without reference to demographic or metadata, using a state-of-the-art speaker recognition system. We demonstrate that the risk is inversely related to the number of comparisons an adversary must consider, i.e., the search space. Risk is high for a small search space but drops as the search space grows ($precision >0.85$ for $<1*10^{6}$ comparisons, $precision <0.5$ for $>3*10^{6}$ comparisons). Next, we show that the nature of a speech recording influences re-identification risk, with non-connected speech (e.g., vowel prolongation) being harder to identify. Our findings suggest that speaker recognition systems can be used to re-identify participants in specific circumstances, but in practice, the re-identification risk appears low.
The rapid development of high-speed railways (HSRs) puts forward high requirements on the corresponding communication system. Millimeter wave (mmWave) can be a promising solution due to its wide bandwidth, narrow beams, and rich spectrum resources. However, with the large number of antenna elements employed, energy-efficient solutions at mmWave frequencies are in great demand. Based on a mmWave HSR communication system with multiple mobile relays (MRs) on top of the train, a dynamic power-control scheme for train-ground communications is proposed. The scheme follows the regular movement characteristics of high-speed trains and considers three phases of train movement: the train enters the cell, all MRs are covered in the cell, and the train leaves the cell. The transmit power is further refined according to the number of MRs in the cell and the distance between the train and the remote radio head. By minimizing energy consumption under the constraints of the transmitted data and transmit power budget, the transmit power is allocated to multiple MRs through the multiplier punitive function-based algorithm. Comprehensive simulation results, where the velocity estimation error is taken into account, are provided to demonstrate the effectiveness of the proposed scheme over several baseline schemes.
Under suitable assumptions, the algorithms in [Lin, Tong, Quantum 2020] can estimate the ground state energy and prepare the ground state of a quantum Hamiltonian with near-optimal query complexities. However, this is based on a block encoding input model of the Hamiltonian, whose implementation is known to require a large resource overhead. We develop a tool called quantum eigenvalue transformation of unitary matrices with real polynomials (QET-U), which uses a controlled Hamiltonian evolution as the input model, a single ancilla qubit and no multi-qubit control operations, and is thus suitable for early fault-tolerant quantum devices. This leads to a simple quantum algorithm that outperforms all previous algorithms with a comparable circuit structure for estimating the ground state energy. For a class of quantum spin Hamiltonians, we propose a new method that exploits certain anti-commutation relations and further removes the need of implementing the controlled Hamiltonian evolution. Coupled with Trotter based approximation of the Hamiltonian evolution, the resulting algorithm can be very suitable for early fault-tolerant quantum devices. We demonstrate the performance of the algorithm using IBM Qiskit for the transverse field Ising model. If we are further allowed to use multi-qubit Toffoli gates, we can then implement amplitude amplification and a new binary amplitude estimation algorithm, which increases the circuit depth but decreases the total query complexity. The resulting algorithm saturates the near-optimal complexity for ground state preparation and energy estimating using a constant number of ancilla qubits (no more than 3).
As smart buildings move towards open communication technologies, providing access to the Building Automation System (BAS) through the intranet, or even remotely through the Internet, has become a common practice. However, BAS was historically developed as a closed environment and designed with limited cyber-security considerations. Thus, smart buildings are vulnerable to cyber-attacks with the increased accessibility. This study introduces the development and capability of a Hardware-in-the-Loop (HIL) testbed for testing and evaluating the cyber-physical security of typical BASs in smart buildings. The testbed consists of three subsystems: (1) a real-time HIL emulator simulating the behavior of a virtual building as well as the Heating, Ventilation, and Air Conditioning (HVAC) equipment via a dynamic simulation in Modelica; (2) a set of real HVAC controllers monitoring the virtual building operation and providing local control signals to control HVAC equipment in the HIL emulator; and (3) a BAS server along with a web-based service for users to fully access the schedule, setpoints, trends, alarms, and other control functions of the HVAC controllers remotely through the BACnet network. The server generates rule-based setpoints to local HVAC controllers. Based on these three subsystems, the HIL testbed supports attack/fault-free and attack/fault-injection experiments at various levels of the building system. The resulting test data can be used to inform the building community and support the cyber-physical security technology transfer to the building industry.
Bid optimization for online advertising from single advertiser's perspective has been thoroughly investigated in both academic research and industrial practice. However, existing work typically assume competitors do not change their bids, i.e., the wining price is fixed, leading to poor performance of the derived solution. Although a few studies use multi-agent reinforcement learning to set up a cooperative game, they still suffer the following drawbacks: (1) They fail to avoid collusion solutions where all the advertisers involved in an auction collude to bid an extremely low price on purpose. (2) Previous works cannot well handle the underlying complex bidding environment, leading to poor model convergence. This problem could be amplified when handling multiple objectives of advertisers which are practical demands but not considered by previous work. In this paper, we propose a novel multi-objective cooperative bid optimization formulation called Multi-Agent Cooperative bidding Games (MACG). MACG sets up a carefully designed multi-objective optimization framework where different objectives of advertisers are incorporated. A global objective to maximize the overall profit of all advertisements is added in order to encourage better cooperation and also to protect self-bidding advertisers. To avoid collusion, we also introduce an extra platform revenue constraint. We analyze the optimal functional form of the bidding formula theoretically and design a policy network accordingly to generate auction-level bids. Then we design an efficient multi-agent evolutionary strategy for model optimization. Offline experiments and online A/B tests conducted on the Taobao platform indicate both single advertiser's objective and global profit have been significantly improved compared to state-of-art methods.