亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Delay alignment modulation (DAM) is a promising technology to achieve ISI-free wideband communication, by leveraging delay compensation and path-based beamforming, rather than the conventional channel equalization or multi-carrier transmission. In particular, when there exist a few strong time-dispersive channel paths, DAM can effectively align different propagation delays and achieve their constructive superposition, thus especially appealing for intelligent reflecting surfaces (IRSs)-aided communications with controllable multi-paths. In this paper, we apply DAM to multi-IRS aided wideband communication and study its practical design and achievable performance. We first provide an asymptotic analysis showing that when the number of base station (BS) antennas is much larger than that of IRSs, an ISI-free channel can be established with appropriate delay pre-compensation and the simple path-based MRT beamforming. We then consider the general system setup and study the problem of joint path-based beamforming and phase shifts design for DAM transmission, by considering the three classical beamforming techniques on a per-path basis, namely the low-complexity path-based MRT beamforming, the path-based ZF beamforming for ISI-free DAM communication, and the optimal path-based MMSE beamforming. As a comparison, OFDM-based multi-IRS aided communication is considered. Simulation results demonstrate that DAM outperforms OFDM in terms of spectral efficiency, BER, and PAPR.

相關內容

Discrete Applied Mathematics的目的是匯集算法和應用離散數學不同領域的研究論文,以及組合數學在信息學和科學技術各個領域的應用。發表在期刊上的文章可以是研究論文、簡短筆記、調查報告,也可以是研究問題。“傳播”部分將致力于盡可能快地出版最近的研究成果,這些成果由編輯委員會的一名成員檢查和推薦出版。《華爾街日報》還將出版數量有限的圖書公告和會議記錄。這些程序將得到充分的裁決,并遵守《華爾街日報》的正常標準。官網鏈接: · Performer · THz · TD · Networking ·
2022 年 12 月 1 日

A simultaneously transmitting and reflecting surface (STARS) aided terahertz (THz) communication system is proposed. A novel power consumption model depending on the type and the resolution of individual elements is proposed for the STARS. Then, the system energy efficiency (EE) and spectral efficiency (SE) are maximized in both narrowband and wideband THz systems. 1) For the narrowband system, an iterative algorithm based on penalty dual decomposition is proposed to jointly optimize the hybrid beamforming at the base station (BS) and the independent phase-shift coefficients at the STARS. The proposed algorithm is then extended to the coupled phase-shift STARS. 2) For the wideband system, to eliminate the beam split effect, a time-delay (TD) network implemented by the true-time-delayers is applied in the hybrid beamforming structure. An iterative algorithm based on the quasi-Newton method is proposed to design the coefficients of the TD network. Finally, our numerical results reveal that i) there is a slight performance loss of EE and SE caused by coupled phase shifts of the STARS in both narrowband and wideband systems, and ii) the conventional hybrid beamforming achieved close performance of EE and SE to the full-digital one in the narrowband system, but not in the wideband system where the TD-based hybrid beamforming is more efficient.

We propose a conservative energy method based on neural networks with subdomains for solving variational problems (CENN), where the admissible function satisfying the essential boundary condition without boundary penalty is constructed by the radial basis function (RBF), particular solution neural network, and general neural network. The loss term is the potential energy, optimized based on the principle of minimum potential energy. The loss term at the interfaces has the lower order derivative compared to the strong form PINN with subdomains. The advantage of the proposed method is higher efficiency, more accurate, and less hyperparameters than the strong form PINN with subdomains. Another advantage of the proposed method is that it can apply to complex geometries based on the special construction of the admissible function. To analyze its performance, the proposed method CENN is used to model representative PDEs, the examples include strong discontinuity, singularity, complex boundary, non-linear, and heterogeneous problems. Furthermore, it outperforms other methods when dealing with heterogeneous problems.

Auto-regressive moving-average (ARMA) models are ubiquitous forecasting tools. Parsimony in such models is highly valued for their interpretability and computational tractability, and as such the identification of model orders remains a fundamental task. We propose a novel method of ARMA order identification through projection predictive inference, which is grounded in Bayesian decision theory and naturally allows for uncertainty communication. It benefits from improved stability through the use of a reference model. The procedure consists of two steps: in the first, the practitioner incorporates their understanding of underlying data-generating process into a reference model, which we latterly project onto possibly parsimonious submodels. These submodels are optimally inferred to best replicate the predictive performance of the reference model. We further propose a search heuristic amenable to the ARMA framework. We show that the submodels selected by our procedure exhibit predictive performance at least as good as those produced by auto.arima over simulated and real-data experiments, and in some cases out-perform the latter. Finally we show that our procedure is robust to noise, and scales well to larger data.

A simultaneously transmitting and reflecting intelligent surface (STARS) enabled integrated sensing and communications (ISAC) framework is proposed, where the whole space is divided by STARS into a sensing space and a communication space. A novel sensing-at-STARS structure, where dedicated sensors are installed at the STARS, is proposed to address the significant path loss and clutter interference for sensing. The Cramer-Rao bound (CRB) of the 2-dimension (2D) direction-of-arrivals (DOAs) estimation of the sensing target is derived, which is then minimized subject to the minimum communication requirement. A novel approach is proposed to transform the complicated CRB minimization problem into a trackable modified Fisher information matrix (FIM) optimization problem. Both independent and coupled phase-shift models of STARS are investigated: 1) For the independent phase-shift model, to address the coupling of ISAC waveform and STARS coefficient in the modified FIM, an efficient double-loop iterative algorithm based on the penalty dual decomposition (PDD) framework is conceived; 2) For the coupled phase-shift model, based on the PDD framework, a low complexity alternating optimization algorithm is proposed to tackle coupled phase-shift constants by alternatively optimizing amplitude and phase-shift coefficients in closed-form. Finally, the numerical results demonstrate that: 1) STARS significantly outperforms the conventional RIS in CRB under the communication constraints; 2) The coupled phase-shift model achieves comparable performance to the independent one for low communication requirements or sufficient STARS elements; 3) It is more efficient to increase the number of passive elements of STARS rather than the active elements of the sensor; 4) High sensing accuracy can be achieved by STARS using the practical 2D maximum likelihood estimator compared with the conventional RIS.

A central challenge of social computing research is to enable people to communicate expressively with each other remotely. Augmented reality has great promise for expressive communication since it enables communication beyond texts and photos and towards immersive experiences rendered in recipients' physical environments. Little research, however, has explored AR's potential for everyday interpersonal communication. In this work, we prototype an AR messaging system, ARwand, to understand people's behaviors and perceptions around communicating with friends via AR messaging. We present our findings under four themes observed from a user study with 24 participants, including the types of immersive messages people choose to send to each other, which factors contribute to a sense of immersiveness, and what concerns arise over this new form of messaging. We discuss important implications of our findings on the design of future immersive communication systems.

In this paper, we propose an inverse-kinematics controller for a class of multi-robot systems in the scenario of sampled communication. The goal is to make a group of robots perform trajectory tracking in a coordinated way when the sampling time of communications is much larger than the sampling time of low-level controllers, disrupting theoretical convergence guarantees of standard control design in continuous time. Given a desired trajectory in configuration space which is precomputed offline, the proposed controller receives configuration measurements, possibly via wireless, to re-compute velocity references for the robots, which are tracked by a low-level controller. We propose joint design of a sampled proportional feedback plus a novel continuous-time feedforward that linearizes the dynamics around the reference trajectory: this method is amenable to distributed communication implementation where only one broadcast transmission is needed per sample. Also, we provide closed-form expressions for instability and stability regions and convergence rate in terms of proportional gain $k$ and sampling period $T$. We test the proposed control strategy via numerical simulations in the scenario of cooperative aerial manipulation of a cable-suspended load using a realistic simulator (Fly-Crane). Finally, we compare our proposed controller with centralized approaches that adapt the feedback gain online through smart heuristics, and show that it achieves comparable performance.

Clustering multi-dimensional points is a fundamental task in many fields, and density-based clustering supports many applications as it can discover clusters of arbitrary shapes. This paper addresses the problem of Density-Peaks Clustering (DPC), a recently proposed density-based clustering framework. Although DPC already has many applications, its straightforward implementation incurs a quadratic time computation to the number of points in a given dataset, thereby does not scale to large datasets. To enable DPC on large datasets, we propose efficient algorithms for DPC. Specifically, we propose an exact algorithm, Ex-DPC, and two approximation algorithms, Approx-DPC and S-Approx-DPC. Under a reasonable assumption about a DPC parameter, our algorithms are sub-quadratic, i.e., break the quadratic barrier. Besides, Approx-DPC does not require any additional parameters and can return the same cluster centers as those of Ex-DPC, rendering an accurate clustering result. S-Approx-DPC requires an approximation parameter but can speed up its computational efficiency. We further present that their efficiencies can be accelerated by leveraging multicore processing. We conduct extensive experiments using synthetic and real datasets, and our experimental results demonstrate that our algorithms are efficient, scalable, and accurate.

We consider a hardware-impaired multi-cell Rician faded massive multi-input multi-output (mMIMO) system with two-layer pilot decontamination precoding, also known as large-scale fading precoding (LSFP). Each BS is equipped with a flexible dynamic analog-to-digital converter (ADC)/digital-to-analog converter (DAC) architecture and the user equipments (UEs) have low-resolution ADCs. Further, both BS and UEs have hardwareimpaired radio frequency chains. The dynamic ADC/DAC architecture allows us to vary the resolution of ADC/DAC connected to each BS antenna, and suitably choose them to maximize the SE. We propose a distortion-aware minimum mean squared error (DA-MMSE) precoder and investigate its usage with two-layer LSFP and conventional single-layer precoding (SLP) for hardware-impaired mMIMO systems. We discuss the use cases of LSFP and SLP with DA-MMSE and distortion-unaware MMSE (DU-MMSE) precoders, which will provide critical insights to the system designer regarding their usage in practical systems.

Collaborative autonomous multi-agent systems covering a specified area have many potential applications, such as UAV search and rescue, forest fire fighting, and real-time high-resolution monitoring. Traditional approaches for such coverage problems involve designing a model-based control policy based on sensor data. However, designing model-based controllers is challenging, and the state-of-the-art classical control policy still exhibits a large degree of suboptimality. In this paper, we present a reinforcement learning (RL) approach for the multi-agent coverage problem involving agents with second-order dynamics. Our approach is based on the Multi-Agent Proximal Policy Optimization Algorithm (MAPPO). To improve the stability of the learning-based policy and efficiency of exploration, we utilize an imitation loss based on the state-of-the-art classical control policy. Our trained policy significantly outperforms the state-of-the-art. Our proposed network architecture includes incorporation of self attention, which allows a single-shot domain transfer of the trained policy to a large variety of domain shapes and number of agents. We demonstrate our proposed method in a variety of simulated experiments.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

北京阿比特科技有限公司