We introduce an approach which allows inferring causal relationships between variables for which the time evolution is available. Our method builds on the ideas of Granger Causality and Transfer Entropy, but overcomes most of their limitations. Specifically, our approach tests whether the predictability of a putative driven system Y can be improved by incorporating information from a potential driver system X, without making assumptions on the underlying dynamics and without the need to compute probability densities of the dynamic variables. Causality is assessed by a rigorous variational scheme based on the Information Imbalance of distance ranks, a recently developed statistical test capable of inferring the relative information content of different distance measures. This framework makes causality detection possible even for high-dimensional systems where only few of the variables are known or measured. Benchmark tests on coupled dynamical systems demonstrate that our approach outperforms other model-free causality detection methods, successfully handling both unidirectional and bidirectional couplings, and it is capable of detecting the arrow of time when present. We also show that the method can be used to robustly detect causality in electroencephalography data in humans.
Traditional approaches for learning on categorical data underexploit the dependencies between columns (\aka fields) in a dataset because they rely on the embedding of data points driven alone by the classification/regression loss. In contrast, we propose a novel method for learning on categorical data with the goal of exploiting dependencies between fields. Instead of modelling statistics of features globally (i.e., by the covariance matrix of features), we learn a global field dependency matrix that captures dependencies between fields and then we refine the global field dependency matrix at the instance-wise level with different weights (so-called local dependency modelling) w.r.t. each field to improve the modelling of the field dependencies. Our algorithm exploits the meta-learning paradigm, i.e., the dependency matrices are refined in the inner loop of the meta-learning algorithm without the use of labels, whereas the outer loop intertwines the updates of the embedding matrix (the matrix performing projection) and global dependency matrix in a supervised fashion (with the use of labels). Our method is simple yet it outperforms several state-of-the-art methods on six popular dataset benchmarks. Detailed ablation studies provide additional insights into our method.
This paper is concerned with the designing, analyzing and implementing linear and nonlinear discretization scheme for the distributed optimal control problem (OCP) with the Cahn-Hilliard (CH) equation as constrained. We propose three difference schemes to approximate and investigate the solution behaviour of the OCP for the CH equation. We present the convergence analysis of the proposed discretization. We verify our findings by presenting numerical experiments.
This article explains the usage of R package CausalModels, which is publicly available on the Comprehensive R Archive Network. While packages are available for sufficiently estimating causal effects, there lacks a package that provides a collection of structural models using the conventional statistical approach developed by Hernan and Robins (2020). CausalModels addresses this deficiency of software in R concerning causal inference by offering tools for methods that account for biases in observational data without requiring extensive statistical knowledge. These methods should not be ignored and may be more appropriate or efficient in solving particular problems. While implementations of these statistical models are distributed among a number of causal packages, CausalModels introduces a simple and accessible framework for a consistent modeling pipeline among a variety of statistical methods for estimating causal effects in a single R package. It consists of common methods including standardization, IP weighting, G-estimation, outcome regression, instrumental variables and propensity matching.
This paper presents RAYEN, a framework to impose hard convex constraints on the output or latent variable of a neural network. RAYEN guarantees that, for any input or any weights of the network, the constraints are satisfied at all times. Compared to other approaches, RAYEN does not perform a computationally-expensive orthogonal projection step onto the feasible set, does not rely on soft constraints (which do not guarantee the satisfaction of the constraints at test time), does not use conservative approximations of the feasible set, and does not perform a potentially slow inner gradient descent correction to enforce the constraints. RAYEN supports any combination of linear, convex quadratic, second-order cone (SOC), and linear matrix inequality (LMI) constraints, achieving a very small computational overhead compared to unconstrained networks. For example, it is able to impose 1K quadratic constraints on a 1K-dimensional variable with an overhead of less than 8 ms, and an LMI constraint with 300x300 dense matrices on a 10K-dimensional variable in less than 12 ms. When used in neural networks that approximate the solution of constrained optimization problems, RAYEN achieves computation times between 20 and 7468 times faster than state-of-the-art algorithms, while guaranteeing the satisfaction of the constraints at all times and obtaining a cost very close to the optimal one.
Randomized trials balance all covariates on average and provide the gold standard for estimating treatment effects. Chance imbalances nevertheless exist more or less in realized treatment allocations and intrigue an important question: what should we do in case the treatment groups differ with respect to some important baseline characteristics? A common strategy is to conduct a {\it preliminary test} of the balance of baseline covariates after randomization, and invoke covariate adjustment for subsequent inference if and only if the realized allocation fails some prespecified criterion. Although such practice is intuitive and popular among practitioners, the existing literature has so far only evaluated its properties under strong parametric model assumptions in theory and simulation, yielding results of limited generality. To fill this gap, we examine two strategies for conducting preliminary test-based covariate adjustment by regression, and evaluate the validity and efficiency of the resulting inferences from the randomization-based perspective. As it turns out, the preliminary-test estimator based on the analysis of covariance can be even less efficient than the unadjusted difference in means, and risks anticonservative confidence intervals based on normal approximation even with the robust standard error. The preliminary-test estimator based on the fully interacted specification is on the other hand less efficient than its counterpart under the {\it always-adjust} strategy, and yields overconservative confidence intervals based on normal approximation. Based on theory and simulation, we echo the existing literature and do not recommend the preliminary-test procedure for covariate adjustment in randomized trials.
Difference-in-differences is without a doubt the most widely used method for evaluating the causal effect of a hypothetical intervention in the possible presence of confounding bias due to hidden factors. The approach is typically used when both pre- and post-exposure outcome measurements are available, and one can reasonably assume that the additive association of the unobserved confounder with the outcome is equal in the two exposure arms, and constant over time; a so-called parallel trends assumption. The parallel trends assumption may not be credible in many practical settings, including if the outcome is binary, a count, or polytomous, and more generally, when the unmeasured confounder exhibits non-additive effects on the distribution of the outcome, even if such effects are constant over time. We introduce an alternative approach that replaces the parallel trends assumption with an odds ratio equi-confounding assumption, which states that confounding bias for the causal effect of interest, encoded by an association between treatment and the potential outcome under no-treatment can be identified with a well-specified generalized linear model relating the pre-exposure outcome and the exposure. As the proposed method identifies any causal effect that is conceivably identified in the absence of confounding bias, including nonlinear effects such as quantile treatment effects, the approach is aptly called Universal Difference-in-differences (UDiD). Both fully parametric and more robust semiparametric UDiD estimators are described and illustrated in a real-world application concerning the causal effects of a Zika virus outbreak on birth rate in Brazil.
Even though the brain operates in pure darkness, within the skull, it can infer the most likely causes of its sensory input. An approach to modelling this inference is to assume that the brain has a generative model of the world, which it can invert to infer the hidden causes behind its sensory stimuli, that is, perception. This assumption raises key questions: how to formulate the problem of designing brain-inspired generative models, how to invert them for the tasks of inference and learning, what is the appropriate loss function to be optimised, and, most importantly, what are the different choices of mean field approximation (MFA) and their implications for variational inference (VI).
Computational methods for thermal radiative transfer problems exhibit high computational costs and a prohibitive memory footprint when the spatial and directional domains are finely resolved. A strategy to reduce such computational costs is dynamical low-rank approximation (DLRA), which represents and evolves the solution on a low-rank manifold, thereby significantly decreasing computational and memory requirements. Efficient discretizations for the DLRA evolution equations need to be carefully constructed to guarantee stability while enabling mass conservation. In this work, we focus on the Su-Olson closure and derive a stable discretization through an implicit coupling of energy and radiation density. Moreover, we propose a rank-adaptive strategy to preserve local mass conservation. Numerical results are presented which showcase the accuracy and efficiency of the proposed method.
Commonsense causality reasoning (CCR) aims at identifying plausible causes and effects in natural language descriptions that are deemed reasonable by an average person. Although being of great academic and practical interest, this problem is still shadowed by the lack of a well-posed theoretical framework; existing work usually relies on deep language models wholeheartedly, and is potentially susceptible to confounding co-occurrences. Motivated by classical causal principles, we articulate the central question of CCR and draw parallels between human subjects in observational studies and natural languages to adopt CCR to the potential-outcomes framework, which is the first such attempt for commonsense tasks. We propose a novel framework, ROCK, to Reason O(A)bout Commonsense K(C)ausality, which utilizes temporal signals as incidental supervision, and balances confounding effects using temporal propensities that are analogous to propensity scores. The ROCK implementation is modular and zero-shot, and demonstrates good CCR capabilities on various datasets.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.