Difference-in-differences is without a doubt the most widely used method for evaluating the causal effect of a hypothetical intervention in the possible presence of confounding bias due to hidden factors. The approach is typically used when both pre- and post-exposure outcome measurements are available, and one can reasonably assume that the additive association of the unobserved confounder with the outcome is equal in the two exposure arms, and constant over time; a so-called parallel trends assumption. The parallel trends assumption may not be credible in many practical settings, including if the outcome is binary, a count, or polytomous, and more generally, when the unmeasured confounder exhibits non-additive effects on the distribution of the outcome, even if such effects are constant over time. We introduce an alternative approach that replaces the parallel trends assumption with an odds ratio equi-confounding assumption, which states that confounding bias for the causal effect of interest, encoded by an association between treatment and the potential outcome under no-treatment can be identified with a well-specified generalized linear model relating the pre-exposure outcome and the exposure. As the proposed method identifies any causal effect that is conceivably identified in the absence of confounding bias, including nonlinear effects such as quantile treatment effects, the approach is aptly called Universal Difference-in-differences (UDiD). Both fully parametric and more robust semiparametric UDiD estimators are described and illustrated in a real-world application concerning the causal effects of a Zika virus outbreak on birth rate in Brazil.
Inferring the effect of interventions within complex systems is a fundamental problem of statistics. A widely studied approach employs structural causal models that postulate noisy functional relations among a set of interacting variables. The underlying causal structure is then naturally represented by a directed graph whose edges indicate direct causal dependencies. In a recent line of work, additional assumptions on the causal models have been shown to render this causal graph identifiable from observational data alone. One example is the assumption of linear causal relations with equal error variances that we will take up in this work. When the graph structure is known, classical methods may be used for calculating estimates and confidence intervals for causal effects. However, in many applications, expert knowledge that provides an a priori valid causal structure is not available. Lacking alternatives, a commonly used two-step approach first learns a graph and then treats the graph as known in inference. This, however, yields confidence intervals that are overly optimistic and fail to account for the data-driven model choice. We argue that to draw reliable conclusions, it is necessary to incorporate the remaining uncertainty about the underlying causal structure in confidence statements about causal effects. To address this issue, we present a framework based on test inversion that allows us to give confidence regions for total causal effects that capture both sources of uncertainty: causal structure and numerical size of nonzero effects.
Inferring variable importance is the key problem of many scientific studies, where researchers seek to learn the effect of a feature $X$ on the outcome $Y$ in the presence of confounding variables $Z$. Focusing on classification problems, we define the expected total variation (ETV), which is an intuitive and deterministic measure of variable importance that does not rely on any model context. We then introduce algorithms for statistical inference on the ETV under design-based/model-X assumptions. These algorithms build on the floodgate notion for regression problems (Zhang and Janson 2020). The algorithms we introduce can leverage any user-specified regression function and produce asymptotic lower confidence bounds for the ETV. We show the effectiveness of our algorithms with simulations and a case study in conjoint analysis on the US general election.
It is shown that a class of optical physical unclonable functions (PUFs) can be learned to arbitrary precision with arbitrarily high probability, even in the presence of noise, given access to polynomially many challenge-response pairs and polynomially bounded computational power, under mild assumptions about the distributions of the noise and challenge vectors. This extends the results of Rh\"uramir et al. (2013), who showed a subset of this class of PUFs to be learnable in polynomial time in the absence of noise, under the assumption that the optics of the PUF were either linear or had negligible nonlinear effects. We derive polynomial bounds for the required number of samples and the computational complexity of a linear regression algorithm, based on size parameters of the PUF, the distributions of the challenge and noise vectors, and the probability and accuracy of the regression algorithm, with a similar analysis to one done by Bootle et al. (2018), who demonstrated a learning attack on a poorly implemented version of the Learning With Errors problem.
Although remote working is increasingly adopted during the pandemic, many are concerned by the low-efficiency in the remote working. Missing in text-based communication are non-verbal cues such as facial expressions and body language, which hinders the effective communication and negatively impacts the work outcomes. Prevalent on social media platforms, emojis, as alternative non-verbal cues, are gaining popularity in the virtual workspaces well. In this paper, we study how emoji usage influences developer participation and issue resolution in virtual workspaces. To this end, we collect GitHub issues for a one-year period and apply causal inference techniques to measure the causal effect of emojis on the outcome of issues, controlling for confounders such as issue content, repository, and author information. We find that emojis can significantly reduce the resolution time of issues and attract more user participation. We also compare the heterogeneous effect on different types of issues. These findings deepen our understanding of the developer communities, and they provide design implications on how to facilitate interactions and broaden developer participation.
One of the essential components of deep learning is the choice of the loss function and performance metrics used to train and evaluate models. This paper reviews the most prevalent loss functions and performance measurements in deep learning. We examine the benefits and limits of each technique and illustrate their application to various deep-learning problems. Our review aims to give a comprehensive picture of the different loss functions and performance indicators used in the most common deep learning tasks and help practitioners choose the best method for their specific task.
We investigate the equational theory of Kleene algebra terms with variable complements -- (language) complement where it applies only to variables -- w.r.t. languages. While the equational theory w.r.t. languages coincides with the language equivalence (under the standard language valuation) for Kleene algebra terms, this coincidence is broken if we extend the terms with complements. In this paper, we prove the decidability of some fragments of the equational theory: the universality problem is coNP-complete, and the inequational theory t <= s is coNP-complete when t does not contain Kleene-star. To this end, we introduce words-to-letters valuations; they are sufficient valuations for the equational theory and ease us in investigating the equational theory w.r.t. languages. Additionally, we prove that for words with variable complements, the equational theory coincides with the word equivalence.
Modern deep learning heavily relies on large labeled datasets, which often comse with high costs in terms of both manual labeling and computational resources. To mitigate these challenges, researchers have explored the use of informative subset selection techniques, including coreset selection and active learning. Specifically, coreset selection involves sampling data with both input ($\bx$) and output ($\by$), active learning focuses solely on the input data ($\bx$). In this study, we present a theoretically optimal solution for addressing both coreset selection and active learning within the context of linear softmax regression. Our proposed method, COPS (unCertainty based OPtimal Sub-sampling), is designed to minimize the expected loss of a model trained on subsampled data. Unlike existing approaches that rely on explicit calculations of the inverse covariance matrix, which are not easily applicable to deep learning scenarios, COPS leverages the model's logits to estimate the sampling ratio. This sampling ratio is closely associated with model uncertainty and can be effectively applied to deep learning tasks. Furthermore, we address the challenge of model sensitivity to misspecification by incorporating a down-weighting approach for low-density samples, drawing inspiration from previous works. To assess the effectiveness of our proposed method, we conducted extensive empirical experiments using deep neural networks on benchmark datasets. The results consistently showcase the superior performance of COPS compared to baseline methods, reaffirming its efficacy.
The inductive biases of graph representation learning algorithms are often encoded in the background geometry of their embedding space. In this paper, we show that general directed graphs can be effectively represented by an embedding model that combines three components: a pseudo-Riemannian metric structure, a non-trivial global topology, and a unique likelihood function that explicitly incorporates a preferred direction in embedding space. We demonstrate the representational capabilities of this method by applying it to the task of link prediction on a series of synthetic and real directed graphs from natural language applications and biology. In particular, we show that low-dimensional cylindrical Minkowski and anti-de Sitter spacetimes can produce equal or better graph representations than curved Riemannian manifolds of higher dimensions.
Exploration-exploitation is a powerful and practical tool in multi-agent learning (MAL), however, its effects are far from understood. To make progress in this direction, we study a smooth analogue of Q-learning. We start by showing that our learning model has strong theoretical justification as an optimal model for studying exploration-exploitation. Specifically, we prove that smooth Q-learning has bounded regret in arbitrary games for a cost model that explicitly captures the balance between game and exploration costs and that it always converges to the set of quantal-response equilibria (QRE), the standard solution concept for games under bounded rationality, in weighted potential games with heterogeneous learning agents. In our main task, we then turn to measure the effect of exploration in collective system performance. We characterize the geometry of the QRE surface in low-dimensional MAL systems and link our findings with catastrophe (bifurcation) theory. In particular, as the exploration hyperparameter evolves over-time, the system undergoes phase transitions where the number and stability of equilibria can change radically given an infinitesimal change to the exploration parameter. Based on this, we provide a formal theoretical treatment of how tuning the exploration parameter can provably lead to equilibrium selection with both positive as well as negative (and potentially unbounded) effects to system performance.
We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.