We develop the concept of exponential stochastic inequality (ESI), a novel notation that simultaneously captures high-probability and in-expectation statements. It is especially well suited to succinctly state, prove, and reason about excess-risk and generalization bounds in statistical learning, specifically, but not restricted to, the PAC-Bayesian type. We show that the ESI satisfies transitivity and other properties which allow us to use it like standard, nonstochastic inequalities. We substantially extend the original definition from Koolen et al. (2016) and show that general ESIs satisfy a host of useful additional properties, including a novel Markov-like inequality. We show how ESIs relate to, and clarify, PAC-Bayesian bounds, subcentered subgamma random variables and *fast-rate conditions* such as the central and Bernstein conditions. We also show how the ideas can be extended to random scaling factors (learning rates).
We explore algorithms to select actions in the causal bandit setting where the learner can choose to intervene on a set of random variables related by a causal graph, and the learner sequentially chooses interventions and observes a sample from the interventional distribution. The learner's goal is to quickly find the intervention, among all interventions on observable variables, that maximizes the expectation of an outcome variable. We depart from previous literature by assuming no knowledge of the causal graph except that latent confounders between the outcome and its ancestors are not present. We first show that the unknown graph problem can be exponentially hard in the parents of the outcome. To remedy this, we adopt an additional additive assumption on the outcome which allows us to solve the problem by casting it as an additive combinatorial linear bandit problem with full-bandit feedback. We propose a novel action-elimination algorithm for this setting, show how to apply this algorithm to the causal bandit problem, provide sample complexity bounds, and empirically validate our findings on a suite of randomly generated causal models, effectively showing that one does not need to explicitly learn the parents of the outcome to identify the best intervention.
In this work we propose a stochastic differential equation (SDE) for modelling health related quality of life (HRQoL) over a lifespan. HRQoL is assumed to be bounded between 0 and 1, equivalent to death and perfect health, respectively. Drift and diffusion parameters of the SDE are chosen to mimic decreasing HRQoL over life and ensuring epidemiological meaningfulness. The Euler-Maruyama method is used to simulate trajectories of individuals in a population of n = 1000 people. Age of death of an individual is simulated as a stopping time with Weibull distribution conditioning the current value of HRQoL as time-varying covariate. The life expectancy and health adjusted life years are compared to the corresponding values for German women.
In this work we propose tailored model order reduction for varying boundary optimal control problems governed by parametric partial differential equations. With varying boundary control, we mean that a specific parameter changes where the boundary control acts on the system. This peculiar formulation might benefit from model order reduction. Indeed, fast and reliable simulations of this model can be of utmost usefulness in many applied fields, such as geophysics and energy engineering. However, varying boundary control features very complicated and diversified parametric behaviour for the state and adjoint variables. The state solution, for example, changing the boundary control parameter, might feature transport phenomena. Moreover, the problem loses its affine structure. It is well known that classical model order reduction techniques fail in this setting, both in accuracy and in efficiency. Thus, we propose reduced approaches inspired by the ones used when dealing with wave-like phenomena. Indeed, we compare standard proper orthogonal decomposition with two tailored strategies: geometric recasting and local proper orthogonal decomposition. Geometric recasting solves the optimization system in a reference domain simplifying the problem at hand avoiding hyper-reduction, while local proper orthogonal decomposition builds local bases to increase the accuracy of the reduced solution in very general settings (where geometric recasting is unfeasible). We compare the various approaches on two different numerical experiments based on geometries of increasing complexity.
Bayesian neural networks often approximate the weight-posterior with a Gaussian distribution. However, practical posteriors are often, even locally, highly non-Gaussian, and empirical performance deteriorates. We propose a simple parametric approximate posterior that adapts to the shape of the true posterior through a Riemannian metric that is determined by the log-posterior gradient. We develop a Riemannian Laplace approximation where samples naturally fall into weight-regions with low negative log-posterior. We show that these samples can be drawn by solving a system of ordinary differential equations, which can be done efficiently by leveraging the structure of the Riemannian metric and automatic differentiation. Empirically, we demonstrate that our approach consistently improves over the conventional Laplace approximation across tasks. We further show that, unlike the conventional Laplace approximation, our method is not overly sensitive to the choice of prior, which alleviates a practical pitfall of current approaches.
We study Stochastic Gradient Descent with AdaGrad stepsizes: a popular adaptive (self-tuning) method for first-order stochastic optimization. Despite being well studied, existing analyses of this method suffer from various shortcomings: they either assume some knowledge of the problem parameters, impose strong global Lipschitz conditions, or fail to give bounds that hold with high probability. We provide a comprehensive analysis of this basic method without any of these limitations, in both the convex and non-convex (smooth) cases, that additionally supports a general ``affine variance'' noise model and provides sharp rates of convergence in both the low-noise and high-noise~regimes.
We develop a principled approach to end-to-end learning in stochastic optimization. First, we show that the standard end-to-end learning algorithm admits a Bayesian interpretation and trains a posterior Bayes action map. Building on the insights of this analysis, we then propose new end-to-end learning algorithms for training decision maps that output solutions of empirical risk minimization and distributionally robust optimization problems, two dominant modeling paradigms in optimization under uncertainty. Numerical results for a synthetic newsvendor problem illustrate the key differences between alternative training schemes. We also investigate an economic dispatch problem based on real data to showcase the impact of the neural network architecture of the decision maps on their test performance.
In a seminal paper in 2013, Witt showed that the (1+1) Evolutionary Algorithm with standard bit mutation needs time $(1+o(1))n \ln n/p_1$ to find the optimum of any linear function, as long as the probability $p_1$ to flip exactly one bit is $\Theta(1)$. In this paper we investigate how this result generalizes if standard bit mutation is replaced by an arbitrary unbiased mutation operator. This situation is notably different, since the stochastic domination argument used for the lower bound by Witt no longer holds. In particular, starting closer to the optimum is not necessarily an advantage, and OneMax is no longer the easiest function for arbitrary starting positions. Nevertheless, we show that Witt's result carries over if $p_1$ is not too small, with different constraints for upper and lower bounds, and if the number of flipped bits has bounded expectation~$\chi$. Notably, this includes some of the heavy-tail mutation operators used in fast genetic algorithms, but not all of them. We also give examples showing that algorithms with unbounded $\chi$ have qualitatively different trajectories close to the optimum.
In this work, we study the Uncertainty Quantification (UQ) of an algorithmic estimator of the saddle point of a strongly-convex strongly-concave objective. Specifically, we show that the averaged iterates of a Stochastic Extra-Gradient (SEG) method for a Saddle Point Problem (SPP) converges almost surely to the saddle point and follows a Central Limit Theorem (CLT) with optimal covariance under two different noise settings, namely the martingale-difference noise and the state-dependent Markov noise. To ensure the stability of the algorithm dynamics under the state-dependent Markov noise, we propose a variant of SEG with truncated varying sets. Our work opens the door for online inference of SPP with numerous potential applications in GAN, robust optimization, and reinforcement learning to name a few. We illustrate our results through numerical experiments.
Two time scale stochastic approximation algorithms emulate singularly perturbed deterministic differential equations in a certain limiting sense, i.e., the interpolated iterates on each time scale approach certain differential equations in the large time limit when viewed on the `algorithmic time scale' defined by the corresponding step sizes viewed as time steps. Their fluctuations around these deterministic limits, after suitable scaling, can be shown to converge to a Gauss-Markov process in law for each time scale. This turns out to be a linear diffusion for the faster iterates and an ordinary differential equation for the slower iterates.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.