亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Differentially private federated learning (DP-FL) has received increasing attention to mitigate the privacy risk in federated learning. Although different schemes for DP-FL have been proposed, there is still a utility gap. Employing central Differential Privacy in FL (CDP-FL) can provide a good balance between the privacy and model utility, but requires a trusted server. Using Local Differential Privacy for FL (LDP-FL) does not require a trusted server, but suffers from lousy privacy-utility trade-off. Recently proposed shuffle DP based FL has the potential to bridge the gap between CDP-FL and LDP-FL without a trusted server; however, there is still a utility gap when the number of model parameters is large. In this work, we propose OLIVE, a system that combines the merits from CDP-FL and LDP-FL by leveraging Trusted Execution Environment (TEE). Our main technical contributions are the analysis and countermeasures against the vulnerability of TEE in OLIVE. Firstly, we theoretically analyze the memory access pattern leakage of OLIVE and find that there is a risk for sparsified gradients, which is common in FL. Secondly, we design an inference attack to understand how the memory access pattern could be linked to the training data. Thirdly, we propose oblivious yet efficient algorithms to prevent the memory access pattern leakage in OLIVE. Our experiments on real-world data demonstrate that OLIVE is efficient even when training a model with hundreds of thousands of parameters and effective against side-channel attacks on TEE.

相關內容

There has been significant recent progress in training differentially private (DP) models which achieve accuracy that approaches the best non-private models. These DP models are typically pretrained on large public datasets and then fine-tuned on downstream datasets that are (i) relatively large, and (ii) similar in distribution to the pretraining data. However, in many applications including personalization, it is crucial to perform well in the few-shot setting, as obtaining large amounts of labeled data may be problematic; and on images from a wide variety of domains for use in various specialist settings. To understand under which conditions few-shot DP can be effective, we perform an exhaustive set of experiments that reveals how the accuracy and vulnerability to attack of few-shot DP image classification models are affected as the number of shots per class, privacy level, model architecture, dataset, and subset of learnable parameters in the model vary. We show that to achieve DP accuracy on par with non-private models, the shots per class must be increased as the privacy level increases by as much as 32$\times$ for CIFAR-100 at $\epsilon=1$. We also find that few-shot non-private models are highly susceptible to membership inference attacks. DP provides clear mitigation against the attacks, but a small $\epsilon$ is required to effectively prevent them. Finally, we evaluate DP federated learning systems and establish state-of-the-art performance on the challenging FLAIR federated learning benchmark.

We explore combining batch order-fair atomic broadcast (of-ABC) and frequent batch auction (FBA) as a defense against general order manipulations in blockchain-based decentralized exchanges (DEX). To justify FBA, we compare the welfare loss of decentralized exchanges under two market designs: continuous limit order book (CLOB), where transactions are processed sequentially, and FBA, where transactions are arranged into batches and a uniform price double auction decides execution order. We model three types of players, common investors, privately informed traders, and arbitrageurs who can provide liquidity and front-run, along with a decentralized exchange. Assuming that the exchange is realized over an of-ABC protocol, we find that FBA can achieve better social welfare compared to CLOB when (1) public information affecting the fundamental value of an asset is revealed more frequently, and/or (2) the block generation interval is sufficiently large, and/or (3) the priority fees are small compared to the asset price changes, and/or (4) fewer privately informed parties exist. Intrinsic reasons are that first, blockchains already treat time as discrete and ensuring order fairness there is non-trivial, allowing even more room for latency arbitrage rents under CLOB; second, sufficiently large block creation interval allows for information dispersion; third, higher priority fees discourage front-running under CLOB; additionally, FBA prioritizes price in deciding execution order and fewer informed traders mean less adverse price impact.

This work proposes Fed-GLOSS-DP, a novel approach to privacy-preserving learning that uses synthetic data to train federated models. In our approach, the server recovers an approximation of the global loss landscape in a local neighborhood based on synthetic samples received from the clients. In contrast to previous, point-wise, gradient-based, linear approximation (such as FedAvg), our formulation enables a type of global optimization that is particularly beneficial in non-IID federated settings. We also present how it rigorously complements record-level differential privacy. Extensive results show that our novel formulation gives rise to considerable improvements in terms of convergence speed and communication costs. We argue that our new approach to federated learning can provide a potential path toward reconciling privacy and accountability by sending differentially private, synthetic data instead of gradient updates. The source code will be released upon publication.

While many solutions for privacy-preserving convex empirical risk minimization (ERM) have been developed, privacy-preserving nonconvex ERM remains a challenge. We study nonconvex ERM, which takes the form of minimizing a finite-sum of nonconvex loss functions over a training set. We propose a new differentially private stochastic gradient descent algorithm for nonconvex ERM that achieves strong privacy guarantees efficiently, and provide a tight analysis of its privacy and utility guarantees, as well as its gradient complexity. Our algorithm reduces gradient complexity while improves the best previous utility guarantee given by Wang et al. (NeurIPS 2017). Our experiments on benchmark nonconvex ERM problems demonstrate superior performance in terms of both training cost and utility gains compared with previous differentially private methods using the same privacy budgets.

Online prediction from experts is a fundamental problem in machine learning and several works have studied this problem under privacy constraints. We propose and analyze new algorithms for this problem that improve over the regret bounds of the best existing algorithms for non-adaptive adversaries. For approximate differential privacy, our algorithms achieve regret bounds of $\tilde{O}(\sqrt{T \log d} + \log d/\varepsilon)$ for the stochastic setting and $\tilde O(\sqrt{T \log d} + T^{1/3} \log d/\varepsilon)$ for oblivious adversaries (where $d$ is the number of experts). For pure DP, our algorithms are the first to obtain sub-linear regret for oblivious adversaries in the high-dimensional regime $d \ge T$. Moreover, we prove new lower bounds for adaptive adversaries. Our results imply that unlike the non-private setting, there is a strong separation between the optimal regret for adaptive and non-adaptive adversaries for this problem. Our lower bounds also show a separation between pure and approximate differential privacy for adaptive adversaries where the latter is necessary to achieve the non-private $O(\sqrt{T})$ regret.

A number of learning models used in consequential domains, such as to assist in legal, banking, hiring, and healthcare decisions, make use of potentially sensitive users' information to carry out inference. Further, the complete set of features is typically required to perform inference. This not only poses severe privacy risks for the individuals using the learning systems, but also requires companies and organizations massive human efforts to verify the correctness of the released information. This paper asks whether it is necessary to require \emph{all} input features for a model to return accurate predictions at test time and shows that, under a personalized setting, each individual may need to release only a small subset of these features without impacting the final decisions. The paper also provides an efficient sequential algorithm that chooses which attributes should be provided by each individual. Evaluation over several learning tasks shows that individuals may be able to report as little as 10\% of their information to ensure the same level of accuracy of a model that uses the complete users' information.

Hierarchical Clustering is a popular unsupervised machine learning method with decades of history and numerous applications. We initiate the study of differentially private approximation algorithms for hierarchical clustering under the rigorous framework introduced by (Dasgupta, 2016). We show strong lower bounds for the problem: that any $\epsilon$-DP algorithm must exhibit $O(|V|^2/ \epsilon)$-additive error for an input dataset $V$. Then, we exhibit a polynomial-time approximation algorithm with $O(|V|^{2.5}/ \epsilon)$-additive error, and an exponential-time algorithm that meets the lower bound. To overcome the lower bound, we focus on the stochastic block model, a popular model of graphs, and, with a separation assumption on the blocks, propose a private $1+o(1)$ approximation algorithm which also recovers the blocks exactly. Finally, we perform an empirical study of our algorithms and validate their performance.

Federated learning (FL) has been proposed to protect data privacy and virtually assemble the isolated data silos by cooperatively training models among organizations without breaching privacy and security. However, FL faces heterogeneity from various aspects, including data space, statistical, and system heterogeneity. For example, collaborative organizations without conflict of interest often come from different areas and have heterogeneous data from different feature spaces. Participants may also want to train heterogeneous personalized local models due to non-IID and imbalanced data distribution and various resource-constrained devices. Therefore, heterogeneous FL is proposed to address the problem of heterogeneity in FL. In this survey, we comprehensively investigate the domain of heterogeneous FL in terms of data space, statistical, system, and model heterogeneity. We first give an overview of FL, including its definition and categorization. Then, We propose a precise taxonomy of heterogeneous FL settings for each type of heterogeneity according to the problem setting and learning objective. We also investigate the transfer learning methodologies to tackle the heterogeneity in FL. We further present the applications of heterogeneous FL. Finally, we highlight the challenges and opportunities and envision promising future research directions toward new framework design and trustworthy approaches.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

北京阿比特科技有限公司