亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Over the past few years, the prevalence of wireless devices has become one of the essential sources of electromagnetic (EM) radiation to the public. Facing with the swift development of wireless communications, people are skeptical about the risks of long-term exposure to EM radiation. As EM exposure is required to be restricted at user terminals, it is inefficient to blindly decrease the transmit power, which leads to limited spectral efficiency and energy efficiency (EE). Recently, rate-splitting multiple access (RSMA) has been proposed as an effective way to provide higher wireless transmission performance, which is a promising technology for future wireless communications. To this end, we propose using RSMA to increase the EE of massive MIMO uplink while limiting the EM exposure of users. In particularly, we investigate the optimization of the transmit covariance matrices and decoding order using statistical channel state information (CSI). The problem is formulated as non-convex mixed integer program, which is in general difficult to handle. We first propose a modified water-filling scheme to obtain the transmit covariance matrices with fixed decoding order. Then, a greedy approach is proposed to obtain the decoding permutation. Numerical results verify the effectiveness of the proposed EM exposure-aware EE maximization scheme for uplink RSMA.

相關內容

Wireless systems must be resilient to jamming attacks. Existing mitigation methods based on multi-antenna processing require knowledge of the jammer's transmit characteristics that may be difficult to acquire, especially for smart jammers that evade mitigation by transmitting only at specific instants. We propose a novel method to mitigate smart jamming attacks on the massive multi-user multiple-input multiple-output (MU-MIMO) uplink which does not require the jammer to be active at any specific instant. By formulating an optimization problem that unifies jammer estimation and mitigation, channel estimation, and data detection, we exploit that a jammer cannot change its subspace within a coherence interval. Theoretical results for our problem formulation show that its solution is guaranteed to recover the users' data symbols under certain conditions. We develop two efficient iterative algorithms for approximately solving the proposed problem formulation: MAED, a parameter-free algorithm which uses forward-backward splitting with a box symbol prior, and SO-MAED, which replaces the prior of MAED with soft-output symbol estimates that exploit the discrete transmit constellation and which uses deep unfolding to optimize algorithm parameters. We use simulations to demonstrate that the proposed algorithms effectively mitigate a wide range of smart jammers without a priori knowledge about the attack type.

Direct multiple shooting (DMS) and direct collocation (DC) are two common transcription methods for solving optimal control problems (OCP) in biomechanics and robotics. They have rarely been compared in terms of solution and speed. Through five examples of predictive simulations solved using five transcription methods and 100 initial guesses in the Bioptim software, we showed that not a single method outperformed systematically better. All methods converged to almost the same solution (cost, states, and controls) in all but one OCP, with several local minima being found in the latter. Nevertheless, DC based on fourth-order Legendre polynomials provided overall better results, especially in terms of dynamic consistency compared to DMS based on a fourth-order Runge-Kutta method. Furthermore, expressing the rigid-body constraints using inverse dynamics was usually faster than forward dynamics. DC with dynamics constraints based on inverse dynamics converged to better and less variable solutions. Consequently, we recommend starting with this transcription to solve OCPs but keep testing other methods.

In this paper, we investigate the uplink performance of cell-free (CF) extremely large-scale multiple-input-multipleoutput (XL-MIMO) systems, which is a promising technique for future wireless communications. More specifically, we consider the practical scenario with multiple base stations (BSs) and multiple user equipments (UEs). To this end, we derive exact achievable spectral efficiency (SE) expressions for any combining scheme. It is worth noting that we derive the closed-form SE expressions for the CF XL-MIMO with maximum ratio (MR) combining. Numerical results show that the SE performance of the CF XL-MIMO can be hugely improved compared with the small-cell XL-MIMO. It is interesting that a smaller antenna spacing leads to a higher correlation level among patch antennas. Finally, we prove that increasing the number of UE antennas may decrease the SE performance with MR combining.

Over the course of the past two decades, a substantial body of research has substantiated the viability of utilising cardiac signals as a biometric modality. This paper presents a novel approach for patient identification in healthcare systems using electrocardiogram signals. A convolutional neural network is used to classify users based on images extracted from ECG signals. The proposed identification system is evaluated in multiple databases, providing a comprehensive understanding of its potential in real-world scenarios. The impact of Cardiovascular Diseases on generic user identification has been largely overlooked in previous studies. The presented method takes into account the cardiovascular condition of the patients, ensuring that the results obtained are not biased or limited. Furthermore, the results obtained are consistent and reliable, with lower error rates and higher accuracy metrics, as demonstrated through extensive experimentation. All these features make the proposed method a valuable contribution to the field of patient identification in healthcare systems, and make it a strong contender for practical applications.

We develop a novel full-Bayesian approach for multiple correlated precision matrices, called multiple Graphical Horseshoe (mGHS). The proposed approach relies on a novel multivariate shrinkage prior based on the Horseshoe prior that borrows strength and shares sparsity patterns across groups, improving posterior edge selection when the precision matrices are similar. On the other hand, there is no loss of performance when the groups are independent. Moreover, mGHS provides a similarity matrix estimate, useful for understanding network similarities across groups. We implement an efficient Metropolis-within-Gibbs for posterior inference; specifically, local variance parameters are updated via a novel and efficient modified rejection sampling algorithm that samples from a three-parameter Gamma distribution. The method scales well with respect to the number of variables and provides one of the fastest full-Bayesian approaches for the estimation of multiple precision matrices. Finally, edge selection is performed with a novel approach based on model cuts. We empirically demonstrate that mGHS outperforms competing approaches through both simulation studies and an application to a bike-sharing dataset.

We present a novel framework based on semi-bounded spatial operators for analyzing and discretizing initial boundary value problems on moving and deforming domains. This development extends an existing framework for well-posed problems and energy stable discretizations from stationary domains to the general case including arbitrary mesh motion. In particular, we show that an energy estimate derived in the physical coordinate system is equivalent to a semi-bounded property with respect to a stationary reference domain. The continuous analysis leading up to this result is based on a skew-symmetric splitting of the material time derivative, and thus relies on the property of integration-by-parts. Following this, a mimetic energy stable arbitrary Lagrangian-Eulerian framework for semi-discretization is formulated, based on approximating the material time derivative in a way consistent with discrete summation-by-parts. Thanks to the semi-bounded property, a method-of-lines approach using standard explicit or implicit time integration schemes can be applied to march the system forward in time. The same type of stability arguments applies as for the corresponding stationary domain problem, without regards to additional properties such as discrete geometric conservation. As an additional bonus we demonstrate that discrete geometric conservation, in the sense of exact free-stream preservation, can still be achieved in an automatic way with the new framework. However, we stress that this is not necessary for stability.

Although the applications of Non-Homogeneous Poisson Processes to model and study the threshold overshoots of interest in different time series of measurements have proven to provide good results, they needed to be complemented with an efficient and automatic diagnostic technique to establish the location of the change-points, which, when taken into account, make the estimated model fit poorly in regards of the information contained in the real model. For this reason, we propose a new method to solve the segmentation uncertainty of the time series of measurements, where the emission distribution of exceedances of a specific threshold is the focus of investigation. One of the great contributions of the present algorithm is that all the days that overflowed are candidates to be a change-point, so all the possible configurations of overflow days are the possible chromosomes, which will unite to have offspring. Under the heuristics of a genetic algorithm, the solution to the problem of finding such change points will be guaranteed to be non-local and the best possible one, reducing wasted machine time evaluating the least likely chromosomes to be a solution to the problem. The analytical evaluation technique will be by means of the Minimum Description Length (\textit{MDL}) as the objective function, which is the joint posterior distribution function of the parameters of each regime and the change points that determines them and which account as well for the influence of the presence of said times.

This paper develops and analyzes an accelerated proximal descent method for finding stationary points of nonconvex composite optimization problems. The objective function is of the form $f+h$ where $h$ is a proper closed convex function, $f$ is a differentiable function on the domain of $h$, and $\nabla f$ is Lipschitz continuous on the domain of $h$. The main advantage of this method is that it is "parameter-free" in the sense that it does not require knowledge of the Lipschitz constant of $\nabla f$ or of any global topological properties of $f$. It is shown that the proposed method can obtain an $\varepsilon$-approximate stationary point with iteration complexity bounds that are optimal, up to logarithmic terms over $\varepsilon$, in both the convex and nonconvex settings. Some discussion is also given about how the proposed method can be leveraged in other existing optimization frameworks, such as min-max smoothing and penalty frameworks for constrained programming, to create more specialized parameter-free methods. Finally, numerical experiments are presented to support the practical viability of the method.

It is quite common that a nonlinear partial differential equation (PDE) admits multiple distinct solutions and each solution may carry a unique physical meaning. One typical approach for finding multiple solutions is to use the Newton method with different initial guesses that ideally fall into the basins of attraction confining the solutions. In this paper, we propose a fast and accurate numerical method for multiple solutions comprised of three ingredients: (i) a well-designed spectral-Galerkin discretization of the underlying PDE leading to a nonlinear algebraic system (NLAS) with multiple solutions; (ii) an effective deflation technique to eliminate a known (founded) solution from the other unknown solutions leading to deflated NLAS; and (iii) a viable nonlinear least-squares and trust-region (LSTR) method for solving the NLAS and the deflated NLAS to find the multiple solutions sequentially one by one. We demonstrate through ample examples of differential equations and comparison with relevant existing approaches that the spectral LSTR-Deflation method has the merits: (i) it is quite flexible in choosing initial values, even starting from the same initial guess for finding all multiple solutions; (ii) it guarantees high-order accuracy; and (iii) it is quite fast to locate multiple distinct solutions and explore new solutions which are not reported in literature.

This paper proposes a flexible framework for inferring large-scale time-varying and time-lagged correlation networks from multivariate or high-dimensional non-stationary time series with piecewise smooth trends. Built on a novel and unified multiple-testing procedure of time-lagged cross-correlation functions with a fixed or diverging number of lags, our method can accurately disclose flexible time-varying network structures associated with complex functional structures at all time points. We broaden the applicability of our method to the structure breaks by developing difference-based nonparametric estimators of cross-correlations, achieve accurate family-wise error control via a bootstrap-assisted procedure adaptive to the complex temporal dynamics, and enhance the probability of recovering the time-varying network structures using a new uniform variance reduction technique. We prove the asymptotic validity of the proposed method and demonstrate its effectiveness in finite samples through simulation studies and empirical applications.

北京阿比特科技有限公司