Although the applications of Non-Homogeneous Poisson Processes to model and study the threshold overshoots of interest in different time series of measurements have proven to provide good results, they needed to be complemented with an efficient and automatic diagnostic technique to establish the location of the change-points, which, when taken into account, make the estimated model fit poorly in regards of the information contained in the real model. For this reason, we propose a new method to solve the segmentation uncertainty of the time series of measurements, where the emission distribution of exceedances of a specific threshold is the focus of investigation. One of the great contributions of the present algorithm is that all the days that overflowed are candidates to be a change-point, so all the possible configurations of overflow days are the possible chromosomes, which will unite to have offspring. Under the heuristics of a genetic algorithm, the solution to the problem of finding such change points will be guaranteed to be non-local and the best possible one, reducing wasted machine time evaluating the least likely chromosomes to be a solution to the problem. The analytical evaluation technique will be by means of the Minimum Description Length (\textit{MDL}) as the objective function, which is the joint posterior distribution function of the parameters of each regime and the change points that determines them and which account as well for the influence of the presence of said times.
The measurement of data over time and/or space is of utmost importance in a wide range of domains from engineering to physics. Devices that perform these measurements therefore need to be extremely precise to obtain correct system diagnostics and accurate predictions, consequently requiring a rigorous calibration procedure which models their errors before being employed. While the deterministic components of these errors do not represent a major modelling challenge, most of the research over the past years has focused on delivering methods that can explain and estimate the complex stochastic components of these errors. This effort has allowed to greatly improve the precision and uncertainty quantification of measurement devices but has this far not accounted for a significant stochastic noise that arises for many of these devices: vibration noise. Indeed, having filtered out physical explanations for this noise, a residual stochastic component often carries over which can drastically affect measurement precision. This component can originate from different sources, including the internal mechanics of the measurement devices as well as the movement of these devices when placed on moving objects or vehicles. To remove this disturbance from signals, this work puts forward a modelling framework for this specific type of noise and adapts the Generalized Method of Wavelet Moments to estimate these models. We deliver the asymptotic properties of this method when applied to processes that include vibration noise and show the considerable practical advantages of this approach in simulation and applied case studies.
The Age of Incorrect Information (AoII) is a recently proposed metric for real-time remote monitoring systems. In particular, AoII measures the time the information at the monitor is incorrect, weighted by the magnitude of this incorrectness, thereby combining the notions of freshness and distortion. This paper addresses the definition of an AoII-optimal transmission policy in a discrete-time communication scheme with a resource constraint and a hybrid automatic repeat request (HARQ) protocol. Considering an $N$-ary symmetric Markov source, the problem is formulated as an infinite-horizon average-cost constrained Markov decision process (CMDP). The source model is characterized by the cardinality of the state space and the probability of staying at the same state. Interestingly, it is proved that under some conditions, the optimal transmission policy is to never transmit. This reveals that there exists a region of the source dynamics where communication is inadequate in reducing the AoII. Elsewhere, there exists an optimal transmission policy, which is a randomized mixture of two discrete threshold-based policies that randomize at one state. The optimal threshold and the randomization component are derived analytically. Numerical results illustrate the impact of source dynamics, channel conditions, and the resource constraint on the average AoII.
Without writing a single line of code by a human, an example Monte Carlo simulation based application for stochastic dependence modeling with copulas is developed using a state-of-the-art large language model (LLM) fine-tuned for conversations. This includes interaction with ChatGPT in natural language and using mathematical formalism, which, under careful supervision by a human-expert, led to producing a working code in MATLAB, Python and R for sampling from a given copula model, evaluation of the model's density, performing maximum likelihood estimation, optimizing the code for parallel computing for CPUs as well as for GPUs, and visualization of the computed results. In contrast to other emerging studies that assess the accuracy of LLMs like ChatGPT on tasks from a selected area, this work rather investigates ways how to achieve a successful solution of a standard statistical task in a collaboration of a human-expert and artificial intelligence (AI). Particularly, through careful prompt engineering, we separate successful solutions generated by ChatGPT from unsuccessful ones, resulting in a comprehensive list of related pros and cons. It is demonstrated that if the typical pitfalls are avoided, we can substantially benefit from collaborating with an AI partner. For example, we show that if ChatGPT is not able to provide a correct solution due to a lack of or incorrect knowledge, the human-expert can feed it with the correct knowledge, e.g., in the form of mathematical theorems and formulas, and make it to apply the gained knowledge in order to provide a solution that is correct. Such ability presents an attractive opportunity to achieve a programmed solution even for users with rather limited knowledge of programming techniques.
Most of the metrics used for detecting a causal relationship among multiple time series ignore the effects of practical measurement impairments, such as finite sample effects, undersampling and measurement noise. It has been shown that these effects significantly impair the performance of the underlying causality test. In this paper, we consider the problem of sequentially detecting the causal relationship between two time series while accounting for these measurement impairments. In this context, we first formulate the problem of Granger causality detection as a binary hypothesis test using the norm of the estimates of the vector auto-regressive~(VAR) coefficients of the two time series as the test statistic. Following this, we investigate sequential estimation of these coefficients and formulate a sequential test for detecting the causal relationship between two time series. Finally via detailed simulations, we validate our derived results, and evaluate the performance of the proposed causality detectors.
Multiple systems estimation is a standard approach to quantifying hidden populations where data sources are based on lists of known cases. A typical modelling approach is to fit a Poisson loglinear model to the numbers of cases observed in each possible combination of the lists. It is necessary to decide which interaction parameters to include in the model, and information criterion approaches are often used for model selection. Difficulties in the context of multiple systems estimation may arise due to sparse or nil counts based on the intersection of lists, and care must be taken when information criterion approaches are used for model selection due to issues relating to the existence of estimates and identifiability of the model. Confidence intervals are often reported conditional on the model selected, providing an over-optimistic impression of the accuracy of the estimation. A bootstrap approach is a natural way to account for the model selection procedure. However, because the model selection step has to be carried out for every bootstrap replication, there may be a high or even prohibitive computational burden. We explore the merit of modifying the model selection procedure in the bootstrap to look only among a subset of models, chosen on the basis of their information criterion score on the original data. This provides large computational gains with little apparent effect on inference. Another model selection approach considered and investigated is a downhill search approach among models, possibly with multiple starting points.
Satellite-based Synthetic Aperture Radar (SAR) images can be used as a source of remote sensed imagery regardless of cloud cover and day-night cycle. However, the speckle noise and varying image acquisition conditions pose a challenge for change detection classifiers. This paper proposes a new method of improving SAR image processing to produce higher quality difference images for the classification algorithms. The method is built on a neural network-based mapping transformation function that produces artificial SAR images from a location in the requested acquisition conditions. The inputs for the model are: previous SAR images from the location, imaging angle information from the SAR images, digital elevation model, and weather conditions. The method was tested with data from a location in North-East Finland by using Sentinel-1 SAR images from European Space Agency, weather data from Finnish Meteorological Institute, and a digital elevation model from National Land Survey of Finland. In order to verify the method, changes to the SAR images were simulated, and the performance of the proposed method was measured using experimentation where it gave substantial improvements to performance when compared to a more conventional method of creating difference images.
This paper studies the change point detection problem in time series of networks, with the Separable Temporal Exponential-family Random Graph Model (STERGM). We consider a sequence of networks generated from a piecewise constant distribution that is altered at unknown change points in time. Detection of the change points can identify the discrepancies in the underlying data generating processes and facilitate downstream dynamic network analysis tasks. Moreover, the STERGM that focuses on network statistics is a flexible model to fit dynamic networks with both dyadic and temporal dependence. We propose a new estimator derived from the Alternating Direction Method of Multipliers (ADMM) and the Group Fused Lasso to simultaneously detect multiple time points, where the parameters of STERGM have changed. We also provide Bayesian information criterion for model selection to assist the detection. Our experiments show good performance of the proposed method on both simulated and real data. Lastly, we develop an R package CPDstergm to implement our method.
For deploying a deep learning model into production, it needs to be both accurate and compact to meet the latency and memory constraints. This usually results in a network that is deep (to ensure performance) and yet thin (to improve computational efficiency). In this paper, we propose an efficient method to train a deep thin network with a theoretic guarantee. Our method is motivated by model compression. It consists of three stages. In the first stage, we sufficiently widen the deep thin network and train it until convergence. In the second stage, we use this well-trained deep wide network to warm up (or initialize) the original deep thin network. This is achieved by letting the thin network imitate the immediate outputs of the wide network from layer to layer. In the last stage, we further fine tune this well initialized deep thin network. The theoretical guarantee is established by using mean field analysis, which shows the advantage of layerwise imitation over traditional training deep thin networks from scratch by backpropagation. We also conduct large-scale empirical experiments to validate our approach. By training with our method, ResNet50 can outperform ResNet101, and BERT_BASE can be comparable with BERT_LARGE, where both the latter models are trained via the standard training procedures as in the literature.
Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.
This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by SimCLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-of-the-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100X fewer labels.