亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

AI approaches are progressing besting humans at game-related tasks (e.g. chess). The next stage is expected to be Human-AI collaboration; however, the research on this subject has been mixed and is in need of additional data points. We add to this nascent literature by studying Human-AI collaboration on a common administrative educational task. Education is a special domain in its relation to AI and has been slow to adopt AI approaches in practice, concerned with the educational enterprise losing its humanistic touch and because standard of quality is demanded because of the impact on a person's career and developmental trajectory. In this study (N = 22), we design an experiment to explore the effect of Human-AI collaboration on the task of tagging educational content with skills from the US common core taxonomy. Our results show that the experiment group (with AI recommendations) saved around 50% time (p < 0.01) in the execution of their tagging task but at the sacrifice of 7.7% recall (p = 0.267) and 35% accuracy (p= 0.1170) compared with the non-AI involved control group, placing the AI+human group in between the AI alone (lowest performance) and the human alone (highest performance). We further analyze log data from this AI collaboration experiment to explore under what circumstances humans still exercised their discernment when receiving recommendations. Finally, we outline how this study can assist in implementing AI tools, like ChatGPT, in education.

相關內容

機器學習系統設計系統評估標準

The advent of 3D Gaussian Splatting (3DGS) has revolutionized 3D editing, offering efficient, high-fidelity rendering and enabling precise local manipulations. Currently, diffusion-based 2D editing models are harnessed to modify multi-view rendered images, which then guide the editing of 3DGS models. However, this approach faces a critical issue of multi-view inconsistency, where the guidance images exhibit significant discrepancies across views, leading to mode collapse and visual artifacts of 3DGS. To this end, we introduce View-consistent Editing (VcEdit), a novel framework that seamlessly incorporates 3DGS into image editing processes, ensuring multi-view consistency in edited guidance images and effectively mitigating mode collapse issues. VcEdit employs two innovative consistency modules: the Cross-attention Consistency Module and the Editing Consistency Module, both designed to reduce inconsistencies in edited images. By incorporating these consistency modules into an iterative pattern, VcEdit proficiently resolves the issue of multi-view inconsistency, facilitating high-quality 3DGS editing across a diverse range of scenes.

Learning-based stereo matching techniques have made significant progress. However, existing methods inevitably lose geometrical structure information during the feature channel generation process, resulting in edge detail mismatches. In this paper, the Motif Cha}nnel Attention Stereo Matching Network (MoCha-Stereo) is designed to address this problem. We provide the Motif Channel Correlation Volume (MCCV) to determine more accurate edge matching costs. MCCV is achieved by projecting motif channels, which capture common geometric structures in feature channels, onto feature maps and cost volumes. In addition, edge variations in %potential feature channels of the reconstruction error map also affect details matching, we propose the Reconstruction Error Motif Penalty (REMP) module to further refine the full-resolution disparity estimation. REMP integrates the frequency information of typical channel features from the reconstruction error. MoCha-Stereo ranks 1st on the KITTI-2015 and KITTI-2012 Reflective leaderboards. Our structure also shows excellent performance in Multi-View Stereo. Code is avaliable at //github.com/ZYangChen/MoCha-Stereo.

Many real-world problems have expensive-to-compute fitness functions and are multi-objective in nature. Surrogate-assisted evolutionary algorithms are often used to tackle such problems. Despite this, literature about analysing the fitness landscapes induced by surrogate models is limited, and even non-existent for multi-objective problems. This study addresses this critical gap by comparing landscapes of the true fitness function with those of surrogate models for multi-objective functions. Moreover, it does so temporally by examining landscape features at different points in time during optimisation, in the vicinity of the population at that point in time. We consider the BBOB bi-objective benchmark functions in our experiments. The results of the fitness landscape analysis reveals significant differences between true and surrogate features at different time points during optimisation. Despite these differences, the true and surrogate landscape features still show high correlations between each other. Furthermore, this study identifies which landscape features are related to search and demonstrates that both surrogate and true landscape features are capable of predicting algorithm performance. These findings indicate that temporal analysis of the landscape features may help to facilitate the design of surrogate switching approaches to improve performance in multi-objective optimisation.

Recently, a surge of 3D style transfer methods has been proposed that leverage the scene reconstruction power of a pre-trained neural radiance field (NeRF). To successfully stylize a scene this way, one must first reconstruct a photo-realistic radiance field from collected images of the scene. However, when only sparse input views are available, pre-trained few-shot NeRFs often suffer from high-frequency artifacts, which are generated as a by-product of high-frequency details for improving reconstruction quality. Is it possible to generate more faithful stylized scenes from sparse inputs by directly optimizing encoding-based scene representation with target style? In this paper, we consider the stylization of sparse-view scenes in terms of disentangling content semantics and style textures. We propose a coarse-to-fine sparse-view scene stylization framework, where a novel hierarchical encoding-based neural representation is designed to generate high-quality stylized scenes directly from implicit scene representations. We also propose a new optimization strategy with content strength annealing to achieve realistic stylization and better content preservation. Extensive experiments demonstrate that our method can achieve high-quality stylization of sparse-view scenes and outperforms fine-tuning-based baselines in terms of stylization quality and efficiency.

Learning from Demonstration (LfD) is a promising approach to enable Multi-Robot Systems (MRS) to acquire complex skills and behaviors. However, the intricate interactions and coordination challenges in MRS pose significant hurdles for effective LfD. In this paper, we present a novel LfD framework specifically designed for MRS, which leverages visual demonstrations to capture and learn from robot-robot and robot-object interactions. Our framework introduces the concept of Interaction Keypoints (IKs) to transform the visual demonstrations into a representation that facilitates the inference of various skills necessary for the task. The robots then execute the task using sensorimotor actions and reinforcement learning (RL) policies when required. A key feature of our approach is the ability to handle unseen contact-based skills that emerge during the demonstration. In such cases, RL is employed to learn the skill using a classifier-based reward function, eliminating the need for manual reward engineering and ensuring adaptability to environmental changes. We evaluate our framework across a range of mobile robot tasks, covering both behavior-based and contact-based domains. The results demonstrate the effectiveness of our approach in enabling robots to learn complex multi-robot tasks and behaviors from visual demonstrations.

To maintain a reliable grid we need fast decision-making algorithms for complex problems like Dynamic Reconfiguration (DyR). DyR optimizes distribution grid switch settings in real-time to minimize grid losses and dispatches resources to supply loads with available generation. DyR is a mixed-integer problem and can be computationally intractable to solve for large grids and at fast timescales. We propose GraPhyR, a Physics-Informed Graph Neural Network (GNNs) framework tailored for DyR. We incorporate essential operational and connectivity constraints directly within the GNN framework and train it end-to-end. Our results show that GraPhyR is able to learn to optimize the DyR task.

The uplink sum-throughput of distributed massive multiple-input-multiple-output (mMIMO) networks depends majorly on Access point (AP)-User Equipment (UE) association and power control. The AP-UE association and power control both are important problems in their own right in distributed mMIMO networks to improve scalability and reduce front-haul load of the network, and to enhance the system performance by mitigating the interference and boosting the desired signals, respectively. Unlike previous studies, which focused primarily on addressing these two problems separately, this work addresses the uplink sum-throughput maximization problem in distributed mMIMO networks by solving the joint AP-UE association and power control problem, while maintaining Quality-of-Service (QoS) requirements for each UE. To improve scalability, we present an l1-penalty function that delicately balances the trade-off between spectral efficiency (SE) and front-haul signaling load. Our proposed methodology leverages fractional programming, Lagrangian dual formation, and penalty functions to provide an elegant and effective iterative solution with guaranteed convergence. Extensive numerical simulations validate the efficacy of the proposed technique for maximizing sum-throughput while considering the joint AP-UE association and power control problem, demonstrating its superiority over approaches that address these problems individually. Furthermore, the results show that the introduced penalty function can help us effectively control the maximum front-haul load.

Multi-relation question answering (QA) is a challenging task, where given questions usually require long reasoning chains in KGs that consist of multiple relations. Recently, methods with explicit multi-step reasoning over KGs have been prominently used in this task and have demonstrated promising performance. Examples include methods that perform stepwise label propagation through KG triples and methods that navigate over KG triples based on reinforcement learning. A main weakness of these methods is that their reasoning mechanisms are usually complex and difficult to implement or train. In this paper, we argue that multi-relation QA can be achieved via end-to-end single-step implicit reasoning, which is simpler, more efficient, and easier to adopt. We propose QAGCN -- a Question-Aware Graph Convolutional Network (GCN)-based method that includes a novel GCN architecture with controlled question-dependent message propagation for the implicit reasoning. Extensive experiments have been conducted, where QAGCN achieved competitive and even superior performance compared to state-of-the-art explicit-reasoning methods. Our code and pre-trained models are available in the repository: //github.com/ruijie-wang-uzh/QAGCN

Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

北京阿比特科技有限公司