Learning-based stereo matching techniques have made significant progress. However, existing methods inevitably lose geometrical structure information during the feature channel generation process, resulting in edge detail mismatches. In this paper, the Motif Cha}nnel Attention Stereo Matching Network (MoCha-Stereo) is designed to address this problem. We provide the Motif Channel Correlation Volume (MCCV) to determine more accurate edge matching costs. MCCV is achieved by projecting motif channels, which capture common geometric structures in feature channels, onto feature maps and cost volumes. In addition, edge variations in %potential feature channels of the reconstruction error map also affect details matching, we propose the Reconstruction Error Motif Penalty (REMP) module to further refine the full-resolution disparity estimation. REMP integrates the frequency information of typical channel features from the reconstruction error. MoCha-Stereo ranks 1st on the KITTI-2015 and KITTI-2012 Reflective leaderboards. Our structure also shows excellent performance in Multi-View Stereo. Code is avaliable at //github.com/ZYangChen/MoCha-Stereo.
Test Driven Development (TDD) is one of the major practices of Extreme Programming for which incremental testing and refactoring trigger the code development. TDD has limited adoption in the industry, as it requires more code to be developed and experienced developers. Generative AI (GenAI) may reduce the extra effort imposed by TDD. In this work, we introduce an approach to automatize TDD by embracing GenAI either in a collaborative interaction pattern in which developers create tests and supervise the AI generation during each iteration or a fully-automated pattern in which developers only supervise the AI generation at the end of the iterations. We run an exploratory experiment with ChatGPT in which the interaction patterns are compared with the non-AI TDD regarding test and code quality and development speed. Overall, we found that, for our experiment and settings, GenAI can be efficiently used in TDD, but it requires supervision of the quality of the produced code. In some cases, it can even mislead non-expert developers and propose solutions just for the sake of the query.
Recent efforts have aimed to improve AI machines in legal case matching by integrating legal domain knowledge. However, successful legal case matching requires the tacit knowledge of legal practitioners, which is difficult to verbalize and encode into machines. This emphasizes the crucial role of involving legal practitioners in high-stakes legal case matching. To address this, we propose a collaborative matching framework called Co-Matching, which encourages both the machine and the legal practitioner to participate in the matching process, integrating tacit knowledge. Unlike existing methods that rely solely on the machine, Co-Matching allows both the legal practitioner and the machine to determine key sentences and then combine them probabilistically. Co-Matching introduces a method called ProtoEM to estimate human decision uncertainty, facilitating the probabilistic combination. Experimental results demonstrate that Co-Matching consistently outperforms existing legal case matching methods, delivering significant performance improvements over human- and machine-based matching in isolation (on average, +5.51% and +8.71%, respectively). Further analysis shows that Co-Matching also ensures better human-machine collaboration effectiveness. Our study represents a pioneering effort in human-machine collaboration for the matching task, marking a milestone for future collaborative matching studies.
Neural radiance fields have achieved remarkable performance in modeling the appearance of 3D scenes. However, existing approaches still struggle with the view-dependent appearance of glossy surfaces, especially under complex lighting of indoor environments. Unlike existing methods, which typically assume distant lighting like an environment map, we propose a learnable Gaussian directional encoding to better model the view-dependent effects under near-field lighting conditions. Importantly, our new directional encoding captures the spatially-varying nature of near-field lighting and emulates the behavior of prefiltered environment maps. As a result, it enables the efficient evaluation of preconvolved specular color at any 3D location with varying roughness coefficients. We further introduce a data-driven geometry prior that helps alleviate the shape radiance ambiguity in reflection modeling. We show that our Gaussian directional encoding and geometry prior significantly improve the modeling of challenging specular reflections in neural radiance fields, which helps decompose appearance into more physically meaningful components.
Learning-based approaches to cloth simulation have started to show their potential in recent years. However, handling collisions and intersections in neural simulations remains a largely unsolved problem. In this work, we present \moniker{}, a learning-based solution for handling intersections in neural cloth simulations. Unlike conventional approaches that critically rely on intersection-free inputs, \moniker{} robustly recovers from intersections introduced through missed collisions, self-penetrating bodies, or errors in manually designed multi-layer outfits. The technical core of \moniker{} is a novel intersection contour loss that penalizes interpenetrations and encourages rapid resolution thereof. We integrate our intersection loss with a collision-avoiding repulsion objective into a neural cloth simulation method based on graph neural networks (GNNs). We demonstrate our method's ability across a challenging set of diverse multi-layer outfits under dynamic human motions. Our extensive analysis indicates that \moniker{} significantly improves collision handling for learned simulation and produces visually compelling results.
Significant progress has been made in the field of handwritten mathematical expression recognition, while existing encoder-decoder methods are usually difficult to model global information in \LaTeX. Therefore, this paper introduces a novel approach, Implicit Character-Aided Learning (ICAL), to mine the global expression information and enhance handwritten mathematical expression recognition. Specifically, we propose the Implicit Character Construction Module (ICCM) to predict implicit character sequences and use a Fusion Module to merge the outputs of the ICCM and the decoder, thereby producing corrected predictions. By modeling and utilizing implicit character information, ICAL achieves a more accurate and context-aware interpretation of handwritten mathematical expressions. Experimental results demonstrate that ICAL notably surpasses the state-of-the-art(SOTA) models, improving the expression recognition rate (ExpRate) by 2.21\%/1.75\%/1.28\% on the CROHME 2014/2016/2019 datasets respectively, and achieves a remarkable 69.25\% on the challenging HME100k test set. We make our code available on the GitHub: //github.com/qingzhenduyu/ICAL
There are only limited classes of multi-player stochastic games in which independent learning is guaranteed to converge to a Nash equilibrium. Markov potential games are a key example of such classes. Prior work has outlined sets of sufficient conditions for a stochastic game to qualify as a Markov potential game. However, these conditions often impose strict limitations on the game's structure and tend to be challenging to verify. To address these limitations, Mguni et al. [12] introduce a relaxed notion of Markov potential games and offer an alternative set of necessary conditions for categorizing stochastic games as potential games. Under these conditions, the authors claim that a deterministic Nash equilibrium can be computed efficiently by solving a dual Markov decision process. In this paper, we offer evidence refuting this claim by presenting a counterexample.
Electromyography-to-Speech (ETS) conversion has demonstrated its potential for silent speech interfaces by generating audible speech from Electromyography (EMG) signals during silent articulations. ETS models usually consist of an EMG encoder which converts EMG signals to acoustic speech features, and a vocoder which then synthesises the speech signals. Due to an inadequate amount of available data and noisy signals, the synthesised speech often exhibits a low level of naturalness. In this work, we propose Diff-ETS, an ETS model which uses a score-based diffusion probabilistic model to enhance the naturalness of synthesised speech. The diffusion model is applied to improve the quality of the acoustic features predicted by an EMG encoder. In our experiments, we evaluated fine-tuning the diffusion model on predictions of a pre-trained EMG encoder, and training both models in an end-to-end fashion. We compared Diff-ETS with a baseline ETS model without diffusion using objective metrics and a listening test. The results indicated the proposed Diff-ETS significantly improved speech naturalness over the baseline.
Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.
Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.
Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.