This paper investigates the problem of informative path planning for a mobile robotic sensor network in spatially temporally distributed mapping. The robots are able to gather noisy measurements from an area of interest during their movements to build a Gaussian Process (GP) model of a spatio-temporal field. The model is then utilized to predict the spatio-temporal phenomenon at different points of interest. To spatially and temporally navigate the group of robots so that they can optimally acquire maximal information gains while their connectivity is preserved, we propose a novel multistep prediction informative path planning optimization strategy employing our newly defined local cost functions. By using the dual decomposition method, it is feasible and practical to effectively solve the optimization problem in a distributed manner. The proposed method was validated through synthetic experiments utilizing real-world data sets.
We report on the development of an implementable physics-data hybrid dynamic model for an articulated manipulator to plan and operate in various scenarios. Meanwhile, the physics-based and data-driven dynamic models are studied in this research to select the best model for planning. The physics-based model is constructed using the Lagrangian method, and the loss terms include inertia loss, viscous loss, and friction loss. As for the data-driven model, three methods are explored, including DNN, LSTM, and XGBoost. Our modeling results demonstrate that, after comprehensive hyperparameter optimization, the XGBoost architecture outperforms DNN and LSTM in accurately representing manipulator dynamics. The hybrid model with physics-based and data-driven terms has the best performance among all models based on the RMSE criteria, and it only needs about 24k of training data. In addition, we developed a virtual force sensor of a manipulator using the observed external torque derived from the dynamic model and designed a motion planner through the physics-data hybrid dynamic model. The external torque contributes to forces and torque on the end effector, facilitating interaction with the surroundings, while the internal torque governs manipulator motion dynamics and compensates for internal losses. By estimating external torque via the difference between measured joint torque and internal losses, we implement a sensorless control strategy which is demonstrated through a peg-in-hole task. Lastly, a learning-based motion planner based on the hybrid dynamic model assists in planning time-efficient trajectories for the manipulator. This comprehensive approach underscores the efficacy of integrating physics-based and data-driven models for advanced manipulator control and planning in industrial environments.
In this paper we present an efficient active-set method for the solution of convex quadratic programming problems with general piecewise-linear terms in the objective, with applications to sparse approximations and risk-minimization. The algorithm is derived by combining a proximal method of multipliers (PMM) with a standard semismooth Newton method (SSN), and is shown to be globally convergent under minimal assumptions. Further local linear (and potentially superlinear) convergence is shown under standard additional conditions. The major computational bottleneck of the proposed approach arises from the solution of the associated SSN linear systems. These are solved using a Krylov-subspace method, accelerated by certain novel general-purpose preconditioners which are shown to be optimal with respect to the proximal penalty parameters. The preconditioners are easy to store and invert, since they exploit the structure of the nonsmooth terms appearing in the problem's objective to significantly reduce their memory requirements. We showcase the efficiency, robustness, and scalability of the proposed solver on a variety of problems arising in risk-averse portfolio selection, $L^1$-regularized partial differential equation constrained optimization, quantile regression, and binary classification via linear support vector machines. We provide computational evidence, on real-world datasets, to demonstrate the ability of the solver to efficiently and competitively handle a diverse set of medium- and large-scale optimization instances.
Successfully addressing a wide variety of tasks is a core ability of autonomous agents, requiring flexibly adapting the underlying decision-making strategies and, as we argue in this work, also adapting the perception modules. An analogical argument would be the human visual system, which uses top-down signals to focus attention determined by the current task. Similarly, we adapt pre-trained large vision models conditioned on specific downstream tasks in the context of multi-task policy learning. We introduce task-conditioned adapters that do not require finetuning any pre-trained weights, combined with a single policy trained with behavior cloning and capable of addressing multiple tasks. We condition the visual adapters on task embeddings, which can be selected at inference if the task is known, or alternatively inferred from a set of example demonstrations. To this end, we propose a new optimization-based estimator. We evaluate the method on a wide variety of tasks from the CortexBench benchmark and show that, compared to existing work, it can be addressed with a single policy. In particular, we demonstrate that adapting visual features is a key design choice and that the method generalizes to unseen tasks given a few demonstrations.
Our paper deals with a collection of networks on a common set of nodes, where some of the networks are associated with responses. Assuming that the networks correspond to points on a one-dimensional manifold in a higher dimensional ambient space, we propose an algorithm to consistently predict the response at an unlabeled network. Our model involves a specific multiple random network model, namely the common subspace independent edge model, where the networks share a common invariant subspace, and the heterogeneity amongst the networks is captured by a set of low dimensional matrices. Our algorithm estimates these low dimensional matrices that capture the heterogeneity of the networks, learns the underlying manifold by isomap, and consistently predicts the response at an unlabeled network. We provide theoretical justifications for the use of our algorithm, validated by numerical simulations. Finally, we demonstrate the use of our algorithm on larval Drosophila connectome data.
We investigate the impact of the input dimension on the generalization error in generative adversarial networks (GANs). In particular, we first provide both theoretical and practical evidence to validate the existence of an optimal input dimension (OID) that minimizes the generalization error. Then, to identify the OID, we introduce a novel framework called generalized GANs (G-GANs), which includes existing GANs as a special case. By incorporating the group penalty and the architecture penalty developed in the paper, G-GANs have several intriguing features. First, our framework offers adaptive dimensionality reduction from the initial dimension to a dimension necessary for generating the target distribution. Second, this reduction in dimensionality also shrinks the required size of the generator network architecture, which is automatically identified by the proposed architecture penalty. Both reductions in dimensionality and the generator network significantly improve the stability and the accuracy of the estimation and prediction. Theoretical support for the consistent selection of the input dimension and the generator network is provided. Third, the proposed algorithm involves an end-to-end training process, and the algorithm allows for dynamic adjustments between the input dimension and the generator network during training, further enhancing the overall performance of G-GANs. Extensive experiments conducted with simulated and benchmark data demonstrate the superior performance of G-GANs. In particular, compared to that of off-the-shelf methods, G-GANs achieves an average improvement of 45.68% in the CT slice dataset, 43.22% in the MNIST dataset and 46.94% in the FashionMNIST dataset in terms of the maximum mean discrepancy or Frechet inception distance. Moreover, the features generated based on the input dimensions identified by G-GANs align with visually significant features.
Challenges to reproducibility and replicability have gained widespread attention, driven by large replication projects with lukewarm success rates. A nascent work has emerged developing algorithms to estimate the replicability of published findings. The current study explores ways in which AI-enabled signals of confidence in research might be integrated into the literature search. We interview 17 PhD researchers about their current processes for literature search and ask them to provide feedback on a replicability estimation tool. Our findings suggest that participants tend to confuse replicability with generalizability and related concepts. Information about replicability can support researchers throughout the research design processes. However, the use of AI estimation is debatable due to the lack of explainability and transparency. The ethical implications of AI-enabled confidence assessment must be further studied before such tools could be widely accepted. We discuss implications for the design of technological tools to support scholarly activities and advance replicability.
Neural network (NN) designed for challenging machine learning tasks is in general a highly nonlinear mapping that contains massive variational parameters. High complexity of NN, if unbounded or unconstrained, might unpredictably cause severe issues including over-fitting, loss of generalization power, and unbearable cost of hardware. In this work, we propose a general compression scheme that significantly reduces the variational parameters of NN by encoding them to deep automatically-differentiable tensor network (ADTN) that contains exponentially-fewer free parameters. Superior compression performance of our scheme is demonstrated on several widely-recognized NN's (FC-2, LeNet-5, AlextNet, ZFNet and VGG-16) and datasets (MNIST, CIFAR-10 and CIFAR-100). For instance, we compress two linear layers in VGG-16 with approximately $10^{7}$ parameters to two ADTN's with just 424 parameters, where the testing accuracy on CIFAR-10 is improved from $90.17 \%$ to $91.74\%$. Our work suggests TN as an exceptionally efficient mathematical structure for representing the variational parameters of NN's, which exhibits superior compressibility over the commonly-used matrices and multi-way arrays.
We propose an abstract conceptual framework for analysing complex security systems using a new notion of modes and mode transitions. A mode is an independent component of a system with its own objectives, monitoring data, algorithms, and scope and limits. The behaviour of a mode, including its transitions to other modes, is determined by interpretations of the mode's monitoring data in the light of its objectives and capabilities -- these interpretations we call beliefs. We formalise the conceptual framework mathematically and, by quantifying and visualising beliefs in higher-dimensional geometric spaces, we argue our models may help both design, analyse and explain systems. The mathematical models are based on simplicial complexes.
This paper focuses on the distributed online convex optimization problem with time-varying inequality constraints over a network of agents, where each agent collaborates with its neighboring agents to minimize the cumulative network-wide loss over time. To reduce communication overhead between the agents, we propose a distributed event-triggered online primal-dual algorithm over a time-varying directed graph. With several classes of appropriately chose decreasing parameter sequences and non-increasing event-triggered threshold sequences, we establish dynamic network regret and network cumulative constraint violation bounds. Finally, a numerical simulation example is provided to verify the theoretical results.
Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.