亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Field-Programmable Gate Array (FPGA)-based Software-Defined Radio (SDR) is well-suited for experimenting with advanced wireless communication systems, as it allows to alter the architecture promptly while obtaining high performance. However, programming the FPGA using a Hardware Description Language (HDL) is a time-consuming task for FPGA developers and difficult for software developers, which limits the potential of SDR. High-Level Synthesis (HLS) tools aid the designers by allowing them to program on a higher layer of abstraction. However, if not carefully designed, it may lead to a degradation in computing performance or significant increase in resource utilization. This work shows that it is feasible to design modern Orthogonal Frequency Division Multiplex (OFDM) baseband processing modules like channel estimation and equalization using HLS without sacrificing performance and to integrate them in an HDL design to form a fully-operational FPGA-based Wi-Fi (IEEE 802.11a/g/n) transceiver. Starting from no HLS experience, a design with minor overhead in terms of latency and resource utilization as compared to the HDL approach was created in less than one month. We show the readability of the sequential logic as coded in HLS, and discuss the lessons learned from the approach taken and the benefits it brings for further design and experimentation. The FPGA design generated by HLS was verified to be bit-true with its MATLAB implementation in simulation. Furthermore, we show its practical performance when deployed on a System-on-Chip (SoC)-based SDR using a professional wireless connectivity tester.

相關內容

Experimental particle physics demands a sophisticated trigger and acquisition system capable to efficiently retain the collisions of interest for further investigation. Heterogeneous computing with the employment of FPGA cards may emerge as a trending technology for the triggering strategy of the upcoming high-luminosity program of the Large Hadron Collider at CERN. In this context, we present two machine-learning algorithms for selecting events where neutral long-lived particles decay within the detector volume studying their accuracy and inference time when accelerated on commercially available Xilinx FPGA accelerator cards. The inference time is also confronted with a CPU- and GPU-based hardware setup. The proposed new algorithms are proven efficient for the considered benchmark physics scenario and their accuracy is found to not degrade when accelerated on the FPGA cards. The results indicate that all tested architectures fit within the latency requirements of a second-level trigger farm and that exploiting accelerator technologies for real-time processing of particle-physics collisions is a promising research field that deserves additional investigations, in particular with machine-learning models with a large number of trainable parameters.

The rise of social media platforms has facilitated the formation of echo chambers, which are online spaces where users predominantly encounter viewpoints that reinforce their existing beliefs while excluding dissenting perspectives. This phenomenon significantly hinders information dissemination across communities and fuels societal polarization. Therefore, it is crucial to develop methods for quantifying echo chambers. In this paper, we present the Echo Chamber Score (ECS), a novel metric that assesses the cohesion and separation of user communities by measuring distances between users in the embedding space. In contrast to existing approaches, ECS is able to function without labels for user ideologies and makes no assumptions about the structure of the interaction graph. To facilitate measuring distances between users, we propose EchoGAE, a self-supervised graph autoencoder-based user embedding model that leverages users' posts and the interaction graph to embed them in a manner that reflects their ideological similarity. To assess the effectiveness of ECS, we use a Twitter dataset consisting of four topics - two polarizing and two non-polarizing. Our results showcase ECS's effectiveness as a tool for quantifying echo chambers and shedding light on the dynamics of online discourse.

It is commonly assumed that the end-to-end networking performance of edge offloading is purely dictated by that of the network connectivity between end devices and edge computing facilities, where ongoing innovation in 5G/6G networking can help. However, with the growing complexity of edge-offloaded computation and dynamic load balancing requirements, an offloaded task often goes through a multi-stage pipeline that spans across multiple compute nodes and proxies interconnected via a dedicated network fabric within a given edge computing facility. As the latest hardware-accelerated transport technologies such as RDMA and GPUDirect RDMA are adopted to build such network fabric, there is a need for good understanding of the full potential of these technologies in the context of computation offload and the effect of different factors such as GPU scheduling and characteristics of computation on the net performance gain achievable by these technologies. This paper unveils detailed insights into the latency overhead in typical machine learning (ML)-based computation pipelines and analyzes the potential benefits of adopting hardware-accelerated communication. To this end, we build a model-serving framework that supports various communication mechanisms. Using the framework, we identify performance bottlenecks in state-of-the-art model-serving pipelines and show how hardware-accelerated communication can alleviate them. For example, we show that GPUDirect RDMA can save 15--50\% of model-serving latency, which amounts to 70--160 ms.

This work presents an experimental evaluation of the detection performance of eight different algorithms for anomaly detection on the Controller Area Network (CAN) bus of modern vehicles based on the analysis of the timing or frequency of CAN messages. This work solves the current limitations of related scientific literature, that is based on private dataset, lacks of open implementations, and detailed description of the detection algorithms. These drawback prevent the reproducibility of published results, and makes it impossible to compare a novel proposal against related work, thus hindering the advancement of science. This paper solves these issues by publicly releasing implementations, labeled datasets and by describing an unbiased experimental comparisons.

Joint communications and sensing (JCAS) is envisioned as a key feature in future wireless communications networks. In massive MIMO-JCAS systems, hybrid beamforming (HBF) is typically employed to achieve satisfactory beamforming gains with reasonable hardware cost and power consumption. Due to the coupling of the analog and digital precoders in HBF and the dual objective in JCAS, JCAS-HBF design problems are very challenging and usually require highly complex algorithms. In this paper, we propose a fast HBF design for JCAS based on deep unfolding to optimize a tradeoff between the communications rate and sensing accuracy. We first derive closed-form expressions for the gradients of the communications and sensing objectives with respect to the precoders and demonstrate that the magnitudes of the gradients pertaining to the analog precoder are typically smaller than those associated with the digital precoder. Based on this observation, we propose a modified projected gradient ascent (PGA) method with significantly improved convergence. We then develop a deep unfolded PGA scheme that efficiently optimizes the communications-sensing performance tradeoff with fast convergence thanks to the well-trained hyperparameters. In doing so, we preserve the interpretability and flexibility of the optimizer while leveraging data to improve performance. Finally, our simulations demonstrate the potential of the proposed deep unfolded method, which achieves up to 33.5% higher communications sum rate and 2.5 dB lower beampattern error compared with the conventional design based on successive convex approximation and Riemannian manifold optimization. Furthermore, it attains up to a 65% reduction in run time and computational complexity with respect to the PGA procedure without unfolding.

Processing sensitive data and deploying well-designed Intellectual Property (IP) cores on remote Field Programmable Gate Array (FPGA) are prone to private data leakage and IP theft. One effective solution is constructing Trusted Execution Environment (TEE) on FPGA-SoCs (FPGA System on Chips). Researchers have integrated this type TEE with Trusted Platform Module (TPM)-based trusted boot, denoted as FPGA-SoC tbTEE. But there is no effort on secure and trusted runtime customization of FPGA-SoC TEE. This paper extends FPGA-SoC tbTEE to build Runtime Customizable TEE (RCTEE) on FPGA-SoC by additive three major components (our work): 1) CrloadIP, which can load an IP core at runtime such that RCTEE can be adjusted dynamically and securely; 2) CexecIP, which can not only execute an IP core without modifying the operating system of FPGA-SoC TEE, but also prevent insider attacks from executing IPs deployed in RCTEE; 3) CremoAT, which can provide the newly measured RCTEE state and establish a secure and trusted communication path between remote verifiers and RCTEE. We conduct a security analysis of RCTEE and its performance evaluation on Xilinx Zynq UltraScale+ XCZU15EG 2FFVB1156 MPSoC.

User selection has become crucial for decreasing the communication costs of federated learning (FL) over wireless networks. However, centralized user selection causes additional system complexity. This study proposes a network intrinsic approach of distributed user selection that leverages the radio resource competition mechanism in random access. Taking the carrier sensing multiple access (CSMA) mechanism as an example of random access, we manipulate the contention window (CW) size to prioritize certain users for obtaining radio resources in each round of training. Training data bias is used as a target scenario for FL with user selection. Prioritization is based on the distance between the newly trained local model and the global model of the previous round. To avoid excessive contribution by certain users, a counting mechanism is used to ensure fairness. Simulations with various datasets demonstrate that this method can rapidly achieve convergence similar to that of the centralized user selection approach.

For all the successes in verifying low-level, efficient, security-critical code, little has been said or studied about the structure, architecture and engineering of such large-scale proof developments. We present the design, implementation and evaluation of a set of language-based techniques that allow the programmer to modularly write and verify code at a high level of abstraction, while retaining control over the compilation process and producing high-quality, zero-overhead, low-level code suitable for integration into mainstream software. We implement our techniques within the F* proof assistant, and specifically its shallowly-embedded Low* toolchain that compiles to C. Through our evaluation, we establish that our techniques were critical in scaling the popular HACL* library past 100,000 lines of verified source code, and brought about significant gains in proof engineer productivity. The exposition of our methodology converges on one final, novel case study: the streaming API, a finicky API that has historically caused many bugs in high-profile software. Using our approach, we manage to capture the streaming semantics in a generic way, and apply it ``for free'' to over a dozen use-cases. Six of those have made it into the reference implementation of the Python programming language, replacing the previous CVE-ridden code.

Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.

It has been a long time that computer architecture and systems are optimized to enable efficient execution of machine learning (ML) algorithms or models. Now, it is time to reconsider the relationship between ML and systems, and let ML transform the way that computer architecture and systems are designed. This embraces a twofold meaning: the improvement of designers' productivity, and the completion of the virtuous cycle. In this paper, we present a comprehensive review of work that applies ML for system design, which can be grouped into two major categories, ML-based modelling that involves predictions of performance metrics or some other criteria of interest, and ML-based design methodology that directly leverages ML as the design tool. For ML-based modelling, we discuss existing studies based on their target level of system, ranging from the circuit level to the architecture/system level. For ML-based design methodology, we follow a bottom-up path to review current work, with a scope of (micro-)architecture design (memory, branch prediction, NoC), coordination between architecture/system and workload (resource allocation and management, data center management, and security), compiler, and design automation. We further provide a future vision of opportunities and potential directions, and envision that applying ML for computer architecture and systems would thrive in the community.

北京阿比特科技有限公司