亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a novel approach for solving the shallow water equations using a discontinuous Galerkin spectral element method. The method we propose has three main features. First, it enjoys a discrete well-balanced property, in a spirit similar to the one of e.g. [20]. As in the reference, our scheme does not require any a-priori knowledge of the steady equilibrium, moreover it does not involve the explicit solution of any local auxiliary problem to approximate such equilibrium. The scheme is also arbitrarily high order, and verifies a continuous in time cell entropy equality. The latter becomes an inequality as soon as additional dissipation is added to the method. The method is constructed starting from a global flux approach in which an additional flux term is constructed as the primitive of the source. We show that, in the context of nodal spectral finite elements, this can be translated into a simple modification of the integral of the source term. We prove that, when using Gauss-Lobatto nodal finite elements this modified integration is equivalent at steady state to a high order Gauss collocation method applied to an ODE for the flux. This method is superconvergent at the collocation points, thus providing a discrete well-balanced property very similar in spirit to the one proposed in [20], albeit not needing the explicit computation of a local approximation of the steady state. To control the entropy production, we introduce artificial viscosity corrections at the cell level and incorporate them into the scheme. We provide theoretical and numerical characterizations of the accuracy and equilibrium preservation of these corrections. Through extensive numerical benchmarking, we validate our theoretical predictions, with considerable improvements in accuracy for steady states, as well as enhanced robustness for more complex scenarios

相關內容

For multi-scale problems, the conventional physics-informed neural networks (PINNs) face some challenges in obtaining available predictions. In this paper, based on PINNs, we propose a practical deep learning framework for multi-scale problems by reconstructing the loss function and associating it with special neural network architectures. New PINN methods derived from the improved PINN framework differ from the conventional PINN method mainly in two aspects. First, the new methods use a novel loss function by modifying the standard loss function through a (grouping) regularization strategy. The regularization strategy implements a different power operation on each loss term so that all loss terms composing the loss function are of approximately the same order of magnitude, which makes all loss terms be optimized synchronously during the optimization process. Second, for the multi-frequency or high-frequency problems, in addition to using the modified loss function, new methods upgrade the neural network architecture from the common fully-connected neural network to special network architectures such as the Fourier feature architecture, and the integrated architecture developed by us. The combination of the above two techniques leads to a significant improvement in the computational accuracy of multi-scale problems. Several challenging numerical examples demonstrate the effectiveness of the proposed methods. The proposed methods not only significantly outperform the conventional PINN method in terms of computational efficiency and computational accuracy, but also compare favorably with the state-of-the-art methods in the recent literature. The improved PINN framework facilitates better application of PINNs to multi-scale problems.

This paper suggests a few novel Cholesky-based square-root algorithms for the maximum correntropy criterion Kalman filtering. In contrast to the previously obtained results, new algorithms are developed in the so-called {\it condensed} form that corresponds to the {\it a priori} filtering. Square-root filter implementations are known to possess a better conditioning and improved numerical robustness when solving ill-conditioned estimation problems. Additionally, the new algorithms permit easier propagation of the state estimate and do not require a back-substitution for computing the estimate. Performance of novel filtering methods is examined by using a fourth order benchmark navigation system example.

We establish quantitative compactness estimates for finite difference schemes used to solve nonlinear conservation laws. These equations involve a flux function $f(k(x,t),u)$, where the coefficient $k(x,t$ is $BV$-regular and may exhibit discontinuities along curves in the $(x,t)$ plane. Our approach, which is technically elementary, relies on a discrete interaction estimate and the existence of one entropy function. While the details are specifically outlined for the Lax-Friedrichs scheme, the same framework can be applied to other difference schemes. Notably, our compactness estimates are new even in the homogeneous case ($k\equiv 1$).

We introduce a novel structure-preserving method in order to approximate the compressible ideal Magnetohydrodynamics (MHD) equations. This technique addresses the MHD equations using a non-divergence formulation, where the contributions of the magnetic field to the momentum and total mechanical energy are treated as source terms. Our approach uses the Marchuk-Strang splitting technique and involves three distinct components: a compressible Euler solver, a source-system solver, and an update procedure for the total mechanical energy. The scheme allows for significant freedom on the choice of Euler's equation solver, while the magnetic field is discretized using a curl-conforming finite element space, yielding exact preservation of the involution constraints. We prove that the method preserves invariant domain properties, including positivity of density, positivity of internal energy, and the minimum principle of the specific entropy. If the scheme used to solve Euler's equation conserves total energy, then the resulting MHD scheme can be proven to preserve total energy. Similarly, if the scheme used to solve Euler's equation is entropy-stable, then the resulting MHD scheme is entropy stable as well. In our approach, the CFL condition does not depend on magnetosonic wave-speeds, but only on the usual maximum wave speed from Euler's system. To validate the effectiveness of our method, we solve a variety of ideal MHD problems, showing that the method is capable of delivering high-order accuracy in space for smooth problems, while also offering unconditional robustness in the shock hydrodynamics regime as well.

This work presents a comparative study to numerically compute impulse approximate controls for parabolic equations with various boundary conditions. Theoretical controllability results have been recently investigated using a logarithmic convexity estimate at a single time based on a Carleman commutator approach. We propose a numerical algorithm for computing the impulse controls with minimal $L^2$-norms by adapting a penalized Hilbert Uniqueness Method (HUM) combined with a Conjugate Gradient (CG) method. We consider static boundary conditions (Dirichlet and Neumann) and dynamic boundary conditions. Some numerical experiments based on our developed algorithm are given to validate and compare the theoretical impulse controllability results.

Scientists continue to develop increasingly complex mechanistic models to reflect their knowledge more realistically. Statistical inference using these models can be challenging since the corresponding likelihood function is often intractable and model simulation may be computationally burdensome. Fortunately, in many of these situations, it is possible to adopt a surrogate model or approximate likelihood function. It may be convenient to conduct Bayesian inference directly with the surrogate, but this can result in bias and poor uncertainty quantification. In this paper we propose a new method for adjusting approximate posterior samples to reduce bias and produce more accurate uncertainty quantification. We do this by optimizing a transform of the approximate posterior that maximizes a scoring rule. Our approach requires only a (fixed) small number of complex model simulations and is numerically stable. We demonstrate good performance of the new method on several examples of increasing complexity.

In this paper we consider the finite element approximation of Maxwell's problem and analyse the prescription of essential boundary conditions in a weak sense using Nitsche's method. To avoid indefiniteness of the problem, the original equations are augmented with the gradient of a scalar field that allows one to impose the zero divergence of the magnetic induction, even if the exact solution for this scalar field is zero. Two finite element approximations are considered, namely, one in which the approximation spaces are assumed to satisfy the appropriate inf-sup condition that render the standard Galerkin method stable, and another augmented and stabilised one that permits the use of finite element interpolations of arbitrary order. Stability and convergence results are provided for the two finite element formulations considered.

In this paper, we propose a modification of an acoustic-transport operator splitting Lagrange-projection method for simulating compressible flows with gravity. The original method involves two steps that respectively account for acoustic and transport effects. Our work proposes a simple modification of the transport step, and the resulting modified scheme turns out to be a flux-splitting method. This new numerical method is less computationally expensive, more memory efficient, and easier to implement than the original one. We prove stability properties for this new scheme by showing that under classical CFL conditions, the method is positivity preserving for mass, energy and entropy satisfying. The flexible flux-splitting structure of the method enables straightforward extensions of the method to multi-dimensional problems (with respect to space) and high-order discretizations that are presented in this work. We also propose an interpretation of the flux-splitting solver as a relaxation approximation. Both the stability and the accuracy of the new method are tested against one-dimensional and two-dimensional numerical experiments that involve highly compressible flows and low-Mach regimes.

We present a new high-order accurate spectral element solution to the two-dimensional scalar Poisson equation subject to a general Robin boundary condition. The solution is based on a simplified version of the shifted boundary method employing a continuous arbitrary order $hp$-Galerkin spectral element method as the numerical discretization procedure. The simplification relies on a polynomial correction to avoid explicitly evaluating high-order partial derivatives from the Taylor series expansion, which traditionally have been used within the shifted boundary method. In this setting, we apply an extrapolation and novel interpolation approach to project the basis functions from the true domain onto the approximate surrogate domain. The resulting solution provides a method that naturally incorporates curved geometrical features of the domain, overcomes complex and cumbersome mesh generation, and avoids problems with small-cut-cells. Dirichlet, Neumann, and general Robin boundary conditions are enforced weakly through: i) a generalized Nitsche's method and ii) a generalized Aubin's method. For this, a consistent asymptotic preserving formulation of the embedded Robin formulations is presented. We present several numerical experiments and analysis of the algorithmic properties of the different weak formulations. With this, we include convergence studies under polynomial, $p$, increase of the basis functions, mesh, $h$, refinement, and matrix conditioning to highlight the spectral and algebraic convergence features, respectively. This is done to assess the influence of errors across variational formulations, polynomial order, mesh size, and mappings between the true and surrogate boundaries.

We consider gradient flow/gradient descent and heavy ball/accelerated gradient descent optimization for convex objective functions. In the gradient flow case, we prove the following: 1. If $f$ does not have a minimizer, the convergence $f(x_t)\to \inf f$ can be arbitrarily slow. 2. If $f$ does have a minimizer, the excess energy $f(x_t) - \inf f$ is integrable/summable in time. In particular, $f(x_t) - \inf f = o(1/t)$ as $t\to\infty$. 3. In Hilbert spaces, this is optimal: $f(x_t) - \inf f$ can decay to $0$ as slowly as any given function which is monotone decreasing and integrable at $\infty$, even for a fixed quadratic objective. 4. In finite dimension (or more generally, for all gradient flow curves of finite length), this is not optimal: We prove that there are convex monotone decreasing integrable functions $g(t)$ which decrease to zero slower than $f(x_t)-\inf f$ for the gradient flow of any convex function on $\mathbb R^d$. For instance, we show that any gradient flow $x_t$ of a convex function $f$ in finite dimension satisfies $\liminf_{t\to\infty} \big(t\cdot \log^2(t)\cdot \big\{f(x_t) -\inf f\big\}\big)=0$. This improves on the commonly reported $O(1/t)$ rate and provides a sharp characterization of the energy decay law. We also note that it is impossible to establish a rate $O(1/(t\phi(t))$ for any function $\phi$ which satisfies $\lim_{t\to\infty}\phi(t) = \infty$, even asymptotically. Similar results are obtained in related settings for (1) discrete time gradient descent, (2) stochastic gradient descent with multiplicative noise and (3) the heavy ball ODE. In the case of stochastic gradient descent, the summability of $\mathbb E[f(x_n) - \inf f]$ is used to prove that $f(x_n)\to \inf f$ almost surely - an improvement on the convergence almost surely up to a subsequence which follows from the $O(1/n)$ decay estimate.

北京阿比特科技有限公司