This work introduces a novel framework for dynamic factor model-based data integration of multiple subjects, called GRoup Integrative DYnamic factor models (GRIDY). The framework facilitates the determination of inter-subject differences between two pre-labeled groups by considering a combination of group spatial information and individual temporal dependence. Furthermore, it enables the identification of intra-subject differences over time by employing different model configurations for each subject. Methodologically, the framework combines a novel principal angle-based rank selection algorithm and a non-iterative integrative analysis framework. Inspired by simultaneous component analysis, this approach also reconstructs identifiable latent factor series with flexible covariance structures. The performance of the framework is evaluated through simulations conducted under various scenarios and the analysis of resting-state functional MRI data collected from multiple subjects in both the Autism Spectrum Disorder group and the control group.
The vehicle routing problem with time windows (VRPTW) is a common optimization problem faced within the logistics industry. In this work, we explore the use of a previously-introduced qubit encoding scheme to reduce the number of binary variables, to evaluate the effectiveness of NISQ devices when applied to industry relevant optimization problems. We apply a quantum variational approach to a testbed of multiple VRPTW instances ranging from 11 to 3964 routes. These intances were formulated as quadratic unconstrained binary optimization (QUBO) problems based on realistic shipping scenarios. We compare our results with standard binary-to-qubit mappings after executing on simulators as well as various quantum hardware platforms, including IBMQ, AWS (Rigetti), and IonQ. These results are benchmarked against the classical solver, Gurobi. Our approach can find approximate solutions to the VRPTW comparable to those obtained from quantum algorithms using the full encoding, despite the reduction in qubits required. These results suggest that using the encoding scheme to fit larger problem sizes into fewer qubits is a promising step in using NISQ devices to find approximate solutions for industry-based optimization problems, although additional resources are still required to eke out the performance from larger problem sizes.
Quantum neural networks (QNNs) and quantum kernels stand as prominent figures in the realm of quantum machine learning, poised to leverage the nascent capabilities of near-term quantum computers to surmount classical machine learning challenges. Nonetheless, the training efficiency challenge poses a limitation on both QNNs and quantum kernels, curbing their efficacy when applied to extensive datasets. To confront this concern, we present a unified approach: coreset selection, aimed at expediting the training of QNNs and quantum kernels by distilling a judicious subset from the original training dataset. Furthermore, we analyze the generalization error bounds of QNNs and quantum kernels when trained on such coresets, unveiling the comparable performance with those training on the complete original dataset. Through systematic numerical simulations, we illuminate the potential of coreset selection in expediting tasks encompassing synthetic data classification, identification of quantum correlations, and quantum compiling. Our work offers a useful way to improve diverse quantum machine learning models with a theoretical guarantee while reducing the training cost.
We evaluate using Julia as a single language and ecosystem paradigm powered by LLVM to develop workflow components for high-performance computing. We run a Gray-Scott, 2-variable diffusion-reaction application using a memory-bound, 7-point stencil kernel on Frontier, the US Department of Energy's first exascale supercomputer. We evaluate the feasibility, performance, scaling, and trade-offs of (i) the computational kernel on AMD's MI250x GPUs, (ii) weak scaling up to 4,096 MPI processes/GPUs or 512 nodes, (iii) parallel I/O writes using the ADIOS2 library bindings, and (iv) Jupyter Notebooks for interactive data analysis. Our results suggest that although Julia generates a reasonable LLVM-IR kernel, a nearly 50\% performance difference exists vs. native AMD HIP stencil codes when running on the GPUs. As expected, we observed near-zero overhead when using MPI and parallel I/O bindings for system-wide installed implementations. Consequently, Julia emerges as a compelling high-performance and high-productivity workflow composition strategy, as measured on the fastest supercomputer in the world.
The problem of optimal recovering high-order mixed derivatives of bivariate functions with finite smoothness is studied. On the basis of the truncation method, an algorithm for numerical differentiation is constructed, which is order-optimal both in the sense of accuracy and in terms of the amount of involved Galerkin information.
We present a robust deep incremental learning framework for regression tasks on financial temporal tabular datasets which is built upon the incremental use of commonly available tabular and time series prediction models to adapt to distributional shifts typical of financial datasets. The framework uses a simple basic building block (decision trees) to build self-similar models of any required complexity to deliver robust performance under adverse situations such as regime changes, fat-tailed distributions, and low signal-to-noise ratios. As a detailed study, we demonstrate our scheme using XGBoost models trained on the Numerai dataset and show that a two layer deep ensemble of XGBoost models over different model snapshots delivers high quality predictions under different market regimes. We also show that the performance of XGBoost models with different number of boosting rounds in three scenarios (small, standard and large) is monotonically increasing with respect to model size and converges towards the generalisation upper bound. We also evaluate the robustness of the model under variability of different hyperparameters, such as model complexity and data sampling settings. Our model has low hardware requirements as no specialised neural architectures are used and each base model can be independently trained in parallel.
We study the machine learning task for models with operators mapping between the Wasserstein space of probability measures and a space of functions, like e.g. in mean-field games/control problems. Two classes of neural networks, based on bin density and on cylindrical approximation, are proposed to learn these so-called mean-field functions, and are theoretically supported by universal approximation theorems. We perform several numerical experiments for training these two mean-field neural networks, and show their accuracy and efficiency in the generalization error with various test distributions. Finally, we present different algorithms relying on mean-field neural networks for solving time-dependent mean-field problems, and illustrate our results with numerical tests for the example of a semi-linear partial differential equation in the Wasserstein space of probability measures.
Graph sparsification is an area of interest in computer science and applied mathematics. Sparsification of a graph, in general, aims to reduce the number of edges in the network while preserving specific properties of the graph, like cuts and subgraph counts. Computing the sparsest cuts of a graph is known to be NP-hard, and sparsification routines exists for generating linear sized sparsifiers in almost quadratic running time $O(n^{2 + \epsilon})$. Consequently, obtaining a sparsifier can be a computationally demanding task and the complexity varies based on the level of sparsity required. In this study, we extend the concept of sparsification to the realm of reaction-diffusion complex systems. We aim to address the challenge of reducing the number of edges in the network while preserving the underlying flow dynamics. To tackle this problem, we adopt a relaxed approach considering only a subset of trajectories. We map the network sparsification problem to a data assimilation problem on a Reduced Order Model (ROM) space with constraints targeted at preserving the eigenmodes of the Laplacian matrix under perturbations. The Laplacian matrix ($L = D - A$) is the difference between the diagonal matrix of degrees ($D$) and the graph's adjacency matrix ($A$). We propose approximations to the eigenvalues and eigenvectors of the Laplacian matrix subject to perturbations for computational feasibility and include a custom function based on these approximations as a constraint on the data assimilation framework. We demonstrate the extension of our framework to achieve sparsity in parameter sets for Neural Ordinary Differential Equations (neural ODEs).
A change point detection (CPD) framework assisted by a predictive machine learning model called "Predict and Compare" is introduced and characterised in relation to other state-of-the-art online CPD routines which it outperforms in terms of false positive rate and out-of-control average run length. The method's focus is on improving standard methods from sequential analysis such as the CUSUM rule in terms of these quality measures. This is achieved by replacing typically used trend estimation functionals such as the running mean with more sophisticated predictive models (Predict step), and comparing their prognosis with actual data (Compare step). The two models used in the Predict step are the ARIMA model and the LSTM recursive neural network. However, the framework is formulated in general terms, so as to allow the use of other prediction or comparison methods than those tested here. The power of the method is demonstrated in a tribological case study in which change points separating the run-in, steady-state, and divergent wear phases are detected in the regime of very few false positives.
We present a novel computational model for the dynamics of alveolar recruitment/derecruitment (RD), which reproduces the underlying characteristics typically observed in injured lungs. The basic idea is a pressure- and time-dependent variation of the stress-free reference volume in reduced dimensional viscoelastic elements representing the acinar tissue. We choose a variable reference volume triggered by critical opening and closing pressures in a time-dependent manner from a straightforward mechanical point of view. In the case of (partially and progressively) collapsing alveolar structures, the volume available for expansion during breathing reduces and vice versa, eventually enabling consideration of alveolar collapse and reopening in our model. We further introduce a method for patient-specific determination of the underlying critical parameters of the new alveolar RD dynamics when integrated into the tissue elements, referred to as terminal units, of a spatially resolved physics-based lung model that simulates the human respiratory system in an anatomically correct manner. Relevant patient-specific parameters of the terminal units are herein determined based on medical image data and the macromechanical behavior of the lung during artificial ventilation. We test the whole modeling approach for a real-life scenario by applying it to the clinical data of a mechanically ventilated patient. The generated lung model is capable of reproducing clinical measurements such as tidal volume and pleural pressure during various ventilation maneuvers. We conclude that this new model is an important step toward personalized treatment of ARDS patients by considering potentially harmful mechanisms - such as cyclic RD and overdistension - and might help in the development of relevant protective ventilation strategies to reduce ventilator-induced lung injury (VILI).
Existing deepfake speech detection systems lack generalizability to unseen attacks (i.e., samples generated by generative algorithms not seen during training). Recent studies have explored the use of universal speech representations to tackle this issue and have obtained inspiring results. These works, however, have focused on innovating downstream classifiers while leaving the representation itself untouched. In this study, we argue that characterizing the long-term temporal dynamics of these representations is crucial for generalizability and propose a new method to assess representation dynamics. Indeed, we show that different generative models generate similar representation dynamics patterns with our proposed method. Experiments on the ASVspoof 2019 and 2021 datasets validate the benefits of the proposed method to detect deepfakes from methods unseen during training, significantly improving on several benchmark methods.