Graph sparsification is an area of interest in computer science and applied mathematics. Sparsification of a graph, in general, aims to reduce the number of edges in the network while preserving specific properties of the graph, like cuts and subgraph counts. Computing the sparsest cuts of a graph is known to be NP-hard, and sparsification routines exists for generating linear sized sparsifiers in almost quadratic running time $O(n^{2 + \epsilon})$. Consequently, obtaining a sparsifier can be a computationally demanding task and the complexity varies based on the level of sparsity required. In this study, we extend the concept of sparsification to the realm of reaction-diffusion complex systems. We aim to address the challenge of reducing the number of edges in the network while preserving the underlying flow dynamics. To tackle this problem, we adopt a relaxed approach considering only a subset of trajectories. We map the network sparsification problem to a data assimilation problem on a Reduced Order Model (ROM) space with constraints targeted at preserving the eigenmodes of the Laplacian matrix under perturbations. The Laplacian matrix ($L = D - A$) is the difference between the diagonal matrix of degrees ($D$) and the graph's adjacency matrix ($A$). We propose approximations to the eigenvalues and eigenvectors of the Laplacian matrix subject to perturbations for computational feasibility and include a custom function based on these approximations as a constraint on the data assimilation framework. We demonstrate the extension of our framework to achieve sparsity in parameter sets for Neural Ordinary Differential Equations (neural ODEs).
Supervised learning problems with side information in the form of a network arise frequently in applications in genomics, proteomics and neuroscience. For example, in genetic applications, the network side information can accurately capture background biological information on the intricate relations among the relevant genes. In this paper, we initiate a study of Bayes optimal learning in high-dimensional linear regression with network side information. To this end, we first introduce a simple generative model (called the Reg-Graph model) which posits a joint distribution for the supervised data and the observed network through a common set of latent parameters. Next, we introduce an iterative algorithm based on Approximate Message Passing (AMP) which is provably Bayes optimal under very general conditions. In addition, we characterize the limiting mutual information between the latent signal and the data observed, and thus precisely quantify the statistical impact of the network side information. Finally, supporting numerical experiments suggest that the introduced algorithm has excellent performance in finite samples.
The aim of this paper is to present a novel general framework for the identification of possibly interconnected systems, while preserving their physical properties and providing accuracy in multi-step prediction. An analytical and recursive algorithm for the gradient computation of the multi-step loss function based on backpropagation is introduced, providing physical and structural insight directly into the learning algorithm. As a case study, the proposed approach is tested for estimating the inertia matrix of a space debris starting from state observations.
We present the OGAN algorithm for automatic requirement falsification of cyber-physical systems. System inputs and output are represented as piecewise constant signals over time while requirements are expressed in signal temporal logic. OGAN can find inputs that are counterexamples for the safety of a system revealing design, software, or hardware defects before the system is taken into operation. The OGAN algorithm works by training a generative machine learning model to produce such counterexamples. It executes tests atomically and does not require any previous model of the system under test. We evaluate OGAN using the ARCH-COMP benchmark problems, and the experimental results show that generative models are a viable method for requirement falsification. OGAN can be applied to new systems with little effort, has few requirements for the system under test, and exhibits state-of-the-art CPS falsification efficiency and effectiveness.
Algebraic varieties are the geometric shapes defined by systems of polynomial equations; they are ubiquitous across mathematics and science. Amongst these algebraic varieties are Q-Fano varieties: positively curved shapes which have Q-factorial terminal singularities. Q-Fano varieties are of fundamental importance in geometry as they are "atomic pieces" of more complex shapes - the process of breaking a shape into simpler pieces in this sense is called the Minimal Model Programme. Despite their importance, the classification of Q-Fano varieties remains unknown. In this paper we demonstrate that machine learning can be used to understand this classification. We focus on 8-dimensional positively-curved algebraic varieties that have toric symmetry and Picard rank 2, and develop a neural network classifier that predicts with 95% accuracy whether or not such an algebraic variety is Q-Fano. We use this to give a first sketch of the landscape of Q-Fanos in dimension 8. How the neural network is able to detect Q-Fano varieties with such accuracy remains mysterious, and hints at some deep mathematical theory waiting to be uncovered. Furthermore, when visualised using the quantum period, an invariant that has played an important role in recent theoretical developments, we observe that the classification as revealed by ML appears to fall within a bounded region, and is stratified by the Fano index. This suggests that it may be possible to state and prove conjectures on completeness in the future. Inspired by the ML analysis, we formulate and prove a new global combinatorial criterion for a positively curved toric variety of Picard rank 2 to have terminal singularities. Together with the first sketch of the landscape of Q-Fanos in higher dimensions, this gives new evidence that machine learning can be an essential tool in developing mathematical conjectures and accelerating theoretical discovery.
Question answering methods are well-known for leveraging data bias, such as the language prior in visual question answering and the position bias in machine reading comprehension (extractive question answering). Current debiasing methods often come at the cost of significant in-distribution performance to achieve favorable out-of-distribution generalizability, while non-debiasing methods sacrifice a considerable amount of out-of-distribution performance in order to obtain high in-distribution performance. Therefore, it is challenging for them to deal with the complicated changing real-world situations. In this paper, we propose a simple yet effective novel loss function with adaptive loose optimization, which seeks to make the best of both worlds for question answering. Our main technical contribution is to reduce the loss adaptively according to the ratio between the previous and current optimization state on mini-batch training data. This loose optimization can be used to prevent non-debiasing methods from overlearning data bias while enabling debiasing methods to maintain slight bias learning. Experiments on the visual question answering datasets, including VQA v2, VQA-CP v1, VQA-CP v2, GQA-OOD, and the extractive question answering dataset SQuAD demonstrate that our approach enables QA methods to obtain state-of-the-art in- and out-of-distribution performance in most cases. The source code has been released publicly in \url{//github.com/reml-group/ALO}.
Linear regression models have been extensively considered in the literature. However, in some practical applications they may not be appropriate all over the range of the covariate. In this paper, a more flexible model is introduced by considering a regression model $Y=r(X)+\varepsilon$ where the regression function $r(\cdot)$ is assumed to be linear for large values in the domain of the predictor variable $X$. More precisely, we assume that $r(x)=\alpha_0+\beta_0 x$ for $x> u_0$, where the value $u_0$ is identified as the smallest value satisfying such a property. A penalized procedure is introduced to estimate the threshold $u_0$. The considered proposal focusses on a semiparametric approach since no parametric model is assumed for the regression function for values smaller than $u_0$. Consistency properties of both the threshold estimator and the estimators of $(\alpha_0,\beta_0)$ are derived, under mild assumptions. Through a numerical study, the small sample properties of the proposed procedure and the importance of introducing a penalization are investigated. The analysis of a real data set allows us to demonstrate the usefulness of the penalized estimators.
This work presents a comparative study to numerically compute impulse approximate controls for parabolic equations with various boundary conditions. Theoretical controllability results have been recently investigated using a logarithmic convexity estimate at a single time based on a Carleman commutator approach. We propose a numerical algorithm for computing the impulse controls with minimal $L^2$-norms by adapting a penalized Hilbert Uniqueness Method (HUM) combined with a Conjugate Gradient (CG) method. We consider static boundary conditions (Dirichlet and Neumann) and dynamic boundary conditions. Some numerical experiments based on our developed algorithm are given to validate and compare the theoretical impulse controllability results.
Conformal inference is a fundamental and versatile tool that provides distribution-free guarantees for many machine learning tasks. We consider the transductive setting, where decisions are made on a test sample of $m$ new points, giving rise to $m$ conformal $p$-values. {While classical results only concern their marginal distribution, we show that their joint distribution follows a P\'olya urn model, and establish a concentration inequality for their empirical distribution function.} The results hold for arbitrary exchangeable scores, including {\it adaptive} ones that can use the covariates of the test+calibration samples at training stage for increased accuracy. We demonstrate the usefulness of these theoretical results through uniform, in-probability guarantees for two machine learning tasks of current interest: interval prediction for transductive transfer learning and novelty detection based on two-class classification.
The main goal of this work is to improve the efficiency of training binary neural networks, which are low latency and low energy networks. The main contribution of this work is the proposal of two solutions comprised of topology changes and strategy training that allow the network to achieve near the state-of-the-art performance and efficient training. The time required for training and the memory required in the process are two factors that contribute to efficient training.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.