Remote photoplethysmography (rPPG) is a noninvasive technique that aims to capture subtle variations in facial pixels caused by changes in blood volume resulting from cardiac activities. Most existing unsupervised methods for rPPG tasks focus on the contrastive learning between samples while neglecting the inherent self-similar prior in physiological signals. In this paper, we propose a Self-Similarity Prior Distillation (SSPD) framework for unsupervised rPPG estimation, which capitalizes on the intrinsic self-similarity of cardiac activities. Specifically, we first introduce a physical-prior embedded augmentation technique to mitigate the effect of various types of noise. Then, we tailor a self-similarity-aware network to extract more reliable self-similar physiological features. Finally, we develop a hierarchical self-distillation paradigm to assist the network in disentangling self-similar physiological patterns from facial videos. Comprehensive experiments demonstrate that the unsupervised SSPD framework achieves comparable or even superior performance compared to the state-of-the-art supervised methods. Meanwhile, SSPD maintains the lowest inference time and computation cost among end-to-end models. The source codes are available at //github.com/LinXi1C/SSPD.
Previous methods based on 3DCNN, convLSTM, or optical flow have achieved great success in video salient object detection (VSOD). However, they still suffer from high computational costs or poor quality of the generated saliency maps. To solve these problems, we design a space-time memory (STM)-based network, which extracts useful temporal information of the current frame from adjacent frames as the temporal branch of VSOD. Furthermore, previous methods only considered single-frame prediction without temporal association. As a result, the model may not focus on the temporal information sufficiently. Thus, we initially introduce object motion prediction between inter-frame into VSOD. Our model follows standard encoder--decoder architecture. In the encoding stage, we generate high-level temporal features by using high-level features from the current and its adjacent frames. This approach is more efficient than the optical flow-based methods. In the decoding stage, we propose an effective fusion strategy for spatial and temporal branches. The semantic information of the high-level features is used to fuse the object details in the low-level features, and then the spatiotemporal features are obtained step by step to reconstruct the saliency maps. Moreover, inspired by the boundary supervision commonly used in image salient object detection (ISOD), we design a motion-aware loss for predicting object boundary motion and simultaneously perform multitask learning for VSOD and object motion prediction, which can further facilitate the model to extract spatiotemporal features accurately and maintain the object integrity. Extensive experiments on several datasets demonstrated the effectiveness of our method and can achieve state-of-the-art metrics on some datasets. The proposed model does not require optical flow or other preprocessing, and can reach a speed of nearly 100 FPS during inference.
Zero-Shot Object Counting (ZSOC) aims to count referred instances of arbitrary classes in a query image without human-annotated exemplars. To deal with ZSOC, preceding studies proposed a two-stage pipeline: discovering exemplars and counting. However, there remains a challenge of vulnerability to error propagation of the sequentially designed two-stage process. In this work, an one-stage baseline, Visual-Language Baseline (VLBase), exploring the implicit association of the semantic-patch embeddings of CLIP is proposed. Subsequently, the extension of VLBase to Visual-language Counter (VLCounter) is achieved by incorporating three modules devised to tailor VLBase for object counting. First, Semantic-conditioned Prompt Tuning (SPT) is introduced within the image encoder to acquire target-highlighted representations. Second, Learnable Affine Transformation (LAT) is employed to translate the semantic-patch similarity map to be appropriate for the counting task. Lastly, the layer-wisely encoded features are transferred to the decoder through Segment-aware Skip Connection (SaSC) to keep the generalization capability for unseen classes. Through extensive experiments on FSC147, CARPK, and PUCPR+, the benefits of the end-to-end framework, VLCounter, are demonstrated.
Estimating high-quality images while also quantifying their uncertainty are two desired features in an image reconstruction algorithm for solving ill-posed inverse problems. In this paper, we propose plug-and-play Monte Carlo (PMC) as a principled framework for characterizing the space of possible solutions to a general inverse problem. PMC is able to incorporate expressive score-based generative priors for high-quality image reconstruction while also performing uncertainty quantification via posterior sampling. In particular, we introduce two PMC algorithms which can be viewed as the sampling analogues of the traditional plug-and-play priors (PnP) and regularization by denoising (RED) algorithms. We also establish a theoretical analysis for characterizing the convergence of the PMC algorithms. Our analysis provides non-asymptotic stationarity guarantees for both algorithms, even in the presence of non-log-concave likelihoods and imperfect score networks. We demonstrate the performance of the PMC algorithms on multiple representative inverse problems with both linear and nonlinear forward models. Experimental results show that PMC significantly improves reconstruction quality and enables high-fidelity uncertainty quantification.
Neural Radiance Fields (NeRF) have recently emerged as a powerful method for image-based 3D reconstruction, but the lengthy per-scene optimization limits their practical usage, especially in resource-constrained settings. Existing approaches solve this issue by reducing the number of input views and regularizing the learned volumetric representation with either complex losses or additional inputs from other modalities. In this paper, we present KeyNeRF, a simple yet effective method for training NeRF in few-shot scenarios by focusing on key informative rays. Such rays are first selected at camera level by a view selection algorithm that promotes baseline diversity while guaranteeing scene coverage, then at pixel level by sampling from a probability distribution based on local image entropy. Our approach performs favorably against state-of-the-art methods, while requiring minimal changes to existing NeRF codebases.
Despite the wide variety of methods developed for synthetic image attribution, most of them can only attribute images generated by models or architectures included in the training set and do not work with unknown architectures, hindering their applicability in real-world scenarios. In this paper, we propose a verification framework that relies on a Siamese Network to address the problem of open-set attribution of synthetic images to the architecture that generated them. We consider two different settings. In the first setting, the system determines whether two images have been produced by the same generative architecture or not. In the second setting, the system verifies a claim about the architecture used to generate a synthetic image, utilizing one or multiple reference images generated by the claimed architecture. The main strength of the proposed system is its ability to operate in both closed and open-set scenarios so that the input images, either the query and reference images, can belong to the architectures considered during training or not. Experimental evaluations encompassing various generative architectures such as GANs, diffusion models, and transformers, focusing on synthetic face image generation, confirm the excellent performance of our method in both closed and open-set settings, as well as its strong generalization capabilities.
Well-designed prompts can guide text-to-image models to generate amazing images. However, the performant prompts are often model-specific and misaligned with user input. Instead of laborious human engineering, we propose prompt adaptation, a general framework that automatically adapts original user input to model-preferred prompts. Specifically, we first perform supervised fine-tuning with a pretrained language model on a small collection of manually engineered prompts. Then we use reinforcement learning to explore better prompts. We define a reward function that encourages the policy to generate more aesthetically pleasing images while preserving the original user intentions. Experimental results on Stable Diffusion show that our method outperforms manual prompt engineering in terms of both automatic metrics and human preference ratings. Moreover, reinforcement learning further boosts performance, especially on out-of-domain prompts. The pretrained checkpoints are available at //aka.ms/promptist. The demo can be found at //aka.ms/promptist-demo.
The pests captured with imaging devices may be relatively small in size compared to the entire images, and complex backgrounds have colors and textures similar to those of the pests, which hinders accurate feature extraction and makes pest identification challenging. The key to pest identification is to create a model capable of detecting regions of interest (ROIs) and transforming them into better ones for attention and discriminative learning. To address these problems, we will study how to generate and update the ROIs via multiscale cross-attention fusion as well as how to be highly robust to complex backgrounds and scale problems. Therefore, we propose a novel ROI-aware multiscale cross-attention vision transformer (ROI-ViT). The proposed ROI-ViT is designed using dual branches, called Pest and ROI branches, which take different types of maps as input: Pest images and ROI maps. To render such ROI maps, ROI generators are built using soft segmentation and a class activation map and then integrated into the ROI-ViT backbone. Additionally, in the dual branch, complementary feature fusion and multiscale hierarchies are implemented via a novel multiscale cross-attention fusion. The class token from the Pest branch is exchanged with the patch tokens from the ROI branch, and vice versa. The experimental results show that the proposed ROI-ViT achieves 81.81%, 99.64%, and 84.66% for IP102, D0, and SauTeg pest datasets, respectively, outperforming state-of-the-art (SOTA) models, such as MViT, PVT, DeiT, Swin-ViT, and EfficientNet. More importantly, for the new challenging dataset IP102(CBSS) that contains only pest images with complex backgrounds and small sizes, the proposed model can maintain high recognition accuracy, whereas that of other SOTA models decrease sharply, demonstrating that our model is more robust to complex background and scale problems.
As a scene graph compactly summarizes the high-level content of an image in a structured and symbolic manner, the similarity between scene graphs of two images reflects the relevance of their contents. Based on this idea, we propose a novel approach for image-to-image retrieval using scene graph similarity measured by graph neural networks. In our approach, graph neural networks are trained to predict the proxy image relevance measure, computed from human-annotated captions using a pre-trained sentence similarity model. We collect and publish the dataset for image relevance measured by human annotators to evaluate retrieval algorithms. The collected dataset shows that our method agrees well with the human perception of image similarity than other competitive baselines.
Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.
Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.