亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Scientific modeling and engineering applications rely heavily on parameter estimation methods to fit physical models and calibrate numerical simulations using real-world measurements. In the absence of analytic statistical models with tractable likelihoods, modern simulation-based inference (SBI) methods first use a numerical simulator to generate a dataset of parameters and simulated outputs. This dataset is then used to approximate the likelihood and estimate the system parameters given observation data. Several SBI methods employ machine learning emulators to accelerate data generation and parameter estimation. However, applying these approaches to high-dimensional physical systems remains challenging due to the cost and complexity of training high-dimensional emulators. This paper introduces Embed and Emulate (E&E): a new SBI method based on contrastive learning that efficiently handles high-dimensional data and complex, multimodal parameter posteriors. E&E learns a low-dimensional latent embedding of the data (i.e., a summary statistic) and a corresponding fast emulator in the latent space, eliminating the need to run expensive simulations or a high dimensional emulator during inference. We illustrate the theoretical properties of the learned latent space through a synthetic experiment and demonstrate superior performance over existing methods in a realistic, non-identifiable parameter estimation task using the high-dimensional, chaotic Lorenz 96 system.

相關內容

This study presents a scalable Bayesian estimation algorithm for sparse estimation in exploratory item factor analysis based on a classical Bayesian estimation method, namely Bayesian joint modal estimation (BJME). BJME estimates the model parameters and factor scores that maximize the complete-data joint posterior density. Simulation studies show that the proposed algorithm has high computational efficiency and accuracy in variable selection over latent factors and the recovery of the model parameters. Moreover, we conducted a real data analysis using large-scale data from a psychological assessment that targeted the Big Five personality traits. This result indicates that the proposed algorithm achieves computationally efficient parameter estimation and extracts the interpretable factor loading structure.

Building on recent developments in models focused on the shape properties of odds ratios, this paper introduces two new models that expand the class of available distributions while preserving specific shape characteristics of an underlying baseline distribution. The first model offers enhanced control over odds and logodds functions, facilitating adjustments to skewness, tail behavior, and hazard rates. The second model, with even greater flexibility, describes odds ratios as quantile distortions. This approach leads to an enlarged log-logistic family capable of capturing these quantile transformations and diverse hazard behaviors, including non-monotonic and bathtub-shaped rates. Central to our study are the shape relations described through stochastic orders; we establish conditions that ensure stochastic ordering both within each family and across models under various ordering concepts, such as hazard rate, likelihood ratio, and convex transform orders.

A posteriori reduced-order models (ROM), e.g. based on proper orthogonal decomposition (POD), are essential to affordably tackle realistic parametric problems. They rely on a trustful training set, that is a family of full-order solutions (snapshots) representative of all possible outcomes of the parametric problem. Having such a rich collection of snapshots is not, in many cases, computationally viable. A strategy for data augmentation, designed for parametric laminar incompressible flows, is proposed to enrich poorly populated training sets. The goal is to include in the new, artificial snapshots emerging features, not present in the original basis, that do enhance the quality of the reduced basis (RB) constructed using POD dimensionality reduction. The methodologies devised are based on exploiting basic physical principles, such as mass and momentum conservation, to construct physically-relevant, artificial snapshots at a fraction of the cost of additional full-order solutions. Interestingly, the numerical results show that the ideas exploiting only mass conservation (i.e., incompressibility) are not producing significant added value with respect to the standard linear combinations of snapshots. Conversely, accounting for the linearized momentum balance via the Oseen equation does improve the quality of the resulting approximation and therefore is an effective data augmentation strategy in the framework of viscous incompressible laminar flows. Numerical experiments of parametric flow problems, in two and three dimensions, at low and moderate values of the Reynolds number are presented to showcase the superior performance of the data-enriched POD-RB with respect to the standard ROM in terms of both accuracy and efficiency.

Many risk-sensitive applications require well-calibrated prediction sets over multiple, potentially correlated target variables, for which the prediction algorithm may report correlated non-conformity scores. In this work, we treat the scores as random vectors and aim to construct the prediction set accounting for their joint correlation structure. Drawing from the rich literature on multivariate quantiles and semiparametric statistics, we propose an algorithm to estimate the $1-\alpha$ quantile of the scores, where $\alpha$ is the user-specified miscoverage rate. In particular, we flexibly estimate the joint cumulative distribution function (CDF) of the scores using nonparametric vine copulas and improve the asymptotic efficiency of the quantile estimate using its influence function. The vine decomposition allows our method to scale well to a large number of targets. We report desired coverage and competitive efficiency on a range of real-world regression problems, including those with missing-at-random labels in the calibration set.

Mobile devices and the Internet of Things (IoT) devices nowadays generate a large amount of heterogeneous spatial-temporal data. It remains a challenging problem to model the spatial-temporal dynamics under privacy concern. Federated learning (FL) has been proposed as a framework to enable model training across distributed devices without sharing original data which reduce privacy concern. Personalized federated learning (PFL) methods further address data heterogenous problem. However, these methods don't consider natural spatial relations among nodes. For the sake of modeling spatial relations, Graph Neural Netowork (GNN) based FL approach have been proposed. But dynamic spatial-temporal relations among edge nodes are not taken into account. Several approaches model spatial-temporal dynamics in a centralized environment, while less effort has been made under federated setting. To overcome these challeges, we propose a novel Federated Adaptive Spatial-Temporal Attention (FedASTA) framework to model the dynamic spatial-temporal relations. On the client node, FedASTA extracts temporal relations and trend patterns from the decomposed terms of original time series. Then, on the server node, FedASTA utilize trend patterns from clients to construct adaptive temporal-spatial aware graph which captures dynamic correlation between clients. Besides, we design a masked spatial attention module with both static graph and constructed adaptive graph to model spatial dependencies among clients. Extensive experiments on five real-world public traffic flow datasets demonstrate that our method achieves state-of-art performance in federated scenario. In addition, the experiments made in centralized setting show the effectiveness of our novel adaptive graph construction approach compared with other popular dynamic spatial-temporal aware methods.

Many models require integrals of high-dimensional functions: for instance, to obtain marginal likelihoods. Such integrals may be intractable, or too expensive to compute numerically. Instead, we can use the Laplace approximation (LA). The LA is exact if the function is proportional to a normal density; its effectiveness therefore depends on the function's true shape. Here, we propose the use of the probabilistic numerical framework to develop a diagnostic for the LA and its underlying shape assumptions, modelling the function and its integral as a Gaussian process and devising a "test" by conditioning on a finite number of function values. The test is decidedly non-asymptotic and is not intended as a full substitute for numerical integration - rather, it is simply intended to test the feasibility of the assumptions underpinning the LA with as minimal computation. We discuss approaches to optimize and design the test, apply it to known sample functions, and highlight the challenges of high dimensions.

Aperiodic autocorrelation is an important indicator of performance of sequences used in communications, remote sensing, and scientific instrumentation. Knowing a sequence's autocorrelation function, which reports the autocorrelation at every possible translation, is equivalent to knowing the magnitude of the sequence's Fourier transform. The phase problem is the difficulty in resolving this lack of phase information. We say that two sequences are equicorrelational to mean that they have the same aperiodic autocorrelation function. Sequences used in technological applications often have restrictions on their terms: they are not arbitrary complex numbers, but come from a more restricted alphabet. For example, binary sequences involve terms equal to only $+1$ and $-1$. We investigate the necessary and sufficient conditions for two sequences to be equicorrelational, where we take their alphabet into consideration. There are trivial forms of equicorrelationality arising from modifications that predictably preserve the autocorrelation, for example, negating a binary sequence or reversing the order of its terms. By a search of binary sequences up to length $44$, we find that nontrivial equicorrelationality among binary sequences does occur, but is rare. An integer $n$ is said to be equivocal when there are binary sequences of length $n$ that are nontrivially equicorrelational; otherwise $n$ is unequivocal. For $n \leq 44$, we found that the unequivocal lengths are $1$--$8$, $10$, $11$, $13$, $14$, $19$, $22$, $23$, $26$, $29$, $37$, and $38$. We pose open questions about the finitude of unequivocal numbers and the probability of nontrivial equicorrelationality occurring among binary sequences.

Measuring distances in a multidimensional setting is a challenging problem, which appears in many fields of science and engineering. In this paper, to measure the distance between two multivariate distributions, we introduce a new measure of discrepancy which is scale invariant and which, in the case of two independent copies of the same distribution, and after normalization, coincides with the scaling invariant multidimensional version of the Gini index recently proposed in [34]. A byproduct of the analysis is an easy-to-handle discrepancy metric, obtained by application of the theory to a pair of Gaussian multidimensional densities. The obtained metric does improve the standard metrics, based on the mean squared error, as it is scale invariant. The importance of this theoretical finding is illustrated by means of a real problem that concerns measuring the importance of Environmental, Social and Governance factors for the growth of small and medium enterprises.

Accurate computation of robust estimates for extremal quantiles of empirical distributions is an essential task for a wide range of applicative fields, including economic policymaking and the financial industry. Such estimates are particularly critical in calculating risk measures, such as Growth-at-Risk (GaR). % and Value-at-Risk (VaR). This work proposes a conformal framework to estimate calibrated quantiles, and presents an extensive simulation study and a real-world analysis of GaR to examine its benefits with respect to the state of the art. Our findings show that CP methods consistently improve the calibration and robustness of quantile estimates at all levels. The calibration gains are appreciated especially at extremal quantiles, which are critical for risk assessment and where traditional methods tend to fall short. In addition, we introduce a novel property that guarantees coverage under the exchangeability assumption, providing a valuable tool for managing risks by quantifying and controlling the likelihood of future extreme observations.

Methods for analyzing representations in neural systems are increasingly popular tools in neuroscience and mechanistic interpretability. Measures comparing neural activations across conditions, architectures, and species give scalable ways to understand information transformation within different neural networks. However, recent findings show that some metrics respond to spurious signals, leading to misleading results. Establishing benchmark test cases is thus essential for identifying the most reliable metric and potential improvements. We propose that compositional learning in recurrent neural networks (RNNs) can provide a test case for dynamical representation alignment metrics. Implementing this case allows us to evaluate if metrics can identify representations that develop throughout learning and determine if representations identified by metrics reflect the network's actual computations. Building both attractor and RNN based test cases, we show that the recently proposed Dynamical Similarity Analysis (DSA) is more noise robust and reliably identifies behaviorally relevant representations compared to prior metrics (Procrustes, CKA). We also demonstrate how such test cases can extend beyond metric evaluation to study new architectures. Specifically, testing DSA in modern (Mamba) state space models suggests that these models, unlike RNNs, may not require changes in recurrent dynamics due to their expressive hidden states. Overall, we develop test cases that showcase how DSA's enhanced ability to detect dynamical motifs makes it highly effective for identifying ongoing computations in RNNs and revealing how networks learn tasks.

北京阿比特科技有限公司