We study the sample complexity of identifying an approximate equilibrium for two-player zero-sum $n\times 2$ matrix games. That is, in a sequence of repeated game plays, how many rounds must the two players play before reaching an approximate equilibrium (e.g., Nash)? We derive instance-dependent bounds that define an ordering over game matrices that captures the intuition that the dynamics of some games converge faster than others. Specifically, we consider a stochastic observation model such that when the two players choose actions $i$ and $j$, respectively, they both observe each other's played actions and a stochastic observation $X_{ij}$ such that $\mathbb E[ X_{ij}] = A_{ij}$. To our knowledge, our work is the first case of instance-dependent lower bounds on the number of rounds the players must play before reaching an approximate equilibrium in the sense that the number of rounds depends on the specific properties of the game matrix $A$ as well as the desired accuracy. We also prove a converse statement: there exist player strategies that achieve this lower bound.
We consider the problem of learning functions in the $\mathcal{F}_{p,\pi}$ and Barron spaces, which are natural function spaces that arise in the high-dimensional analysis of random feature models (RFMs) and two-layer neural networks. Through a duality analysis, we reveal that the approximation and estimation of these spaces can be considered equivalent in a certain sense. This enables us to focus on the easier problem of approximation and estimation when studying the generalization of both models. The dual equivalence is established by defining an information-based complexity that can effectively control estimation errors. Additionally, we demonstrate the flexibility of our duality framework through comprehensive analyses of two concrete applications. The first application is to study learning functions in $\mathcal{F}_{p,\pi}$ with RFMs. We prove that the learning does not suffer from the curse of dimensionality as long as $p>1$, implying RFMs can work beyond the kernel regime. Our analysis extends existing results [CMM21] to the noisy case and removes the requirement of overparameterization. The second application is to investigate the learnability of reproducing kernel Hilbert space (RKHS) under the $L^\infty$ metric. We derive both lower and upper bounds of the minimax estimation error by using the spectrum of the associated kernel. We then apply these bounds to dot-product kernels and analyze how they scale with the input dimension. Our results suggest that learning with ReLU (random) features is generally intractable in terms of reaching high uniform accuracy.
We consider off-policy evaluation of dynamic treatment rules under sequential ignorability, given an assumption that the underlying system can be modeled as a partially observed Markov decision process (POMDP). We propose an estimator, partial history importance weighting, and show that it can consistently estimate the stationary mean rewards of a target policy given long enough draws from the behavior policy. We provide an upper bound on its error that decays polynomially in the number of observations (i.e., the number of trajectories times their length), with an exponent that depends on the overlap of the target and behavior policies, and on the mixing time of the underlying system. Furthermore, we show that this rate of convergence is minimax given only our assumptions on mixing and overlap. Our results establish that off-policy evaluation in POMDPs is strictly harder than off-policy evaluation in (fully observed) Markov decision processes, but strictly easier than model-free off-policy evaluation.
Recovering causal relationships from data is an important problem. Using observational data, one can typically only recover causal graphs up to a Markov equivalence class and additional assumptions or interventional data are needed for complete recovery. In this work, under some standard assumptions, we study causal graph discovery via adaptive interventions with node-dependent interventional costs. For this setting, we show that no algorithm can achieve an approximation guarantee that is asymptotically better than linear in the number of vertices with respect to the verification number; a well-established benchmark for adaptive search algorithms. Motivated by this negative result, we define a new benchmark that captures the worst-case interventional cost for any search algorithm. Furthermore, with respect to this new benchmark, we provide adaptive search algorithms that achieve logarithmic approximations under various settings: atomic, bounded size interventions and generalized cost objectives.
In Reinforcement Learning (RL), an agent acts in an unknown environment to maximize the expected cumulative discounted sum of an external reward signal, i.e., the expected return. In practice, in many tasks of interest, such as policy optimization, the agent usually spends its interaction budget by collecting episodes of fixed length within a simulator (i.e., Monte Carlo simulation). However, given the discounted nature of the RL objective, this data collection strategy might not be the best option. Indeed, the rewards taken in early simulation steps weigh exponentially more than future rewards. Taking a cue from this intuition, in this paper, we design an a-priori budget allocation strategy that leads to the collection of trajectories of different lengths, i.e., truncated. The proposed approach provably minimizes the width of the confidence intervals around the empirical estimates of the expected return of a policy. After discussing the theoretical properties of our method, we make use of our trajectory truncation mechanism to extend Policy Optimization via Importance Sampling (POIS, Metelli et al., 2018) algorithm. Finally, we conduct a numerical comparison between our algorithm and POIS: the results are consistent with our theory and show that an appropriate truncation of the trajectories can succeed in improving performance.
Motivated by a number of real-world applications from domains like healthcare and sustainable transportation, in this paper we study a scenario of repeated principal-agent games within a multi-armed bandit (MAB) framework, where: the principal gives a different incentive for each bandit arm, the agent picks a bandit arm to maximize its own expected reward plus incentive, and the principal observes which arm is chosen and receives a reward (different than that of the agent) for the chosen arm. Designing policies for the principal is challenging because the principal cannot directly observe the reward that the agent receives for their chosen actions, and so the principal cannot directly learn the expected reward using existing estimation techniques. As a result, the problem of designing policies for this scenario, as well as similar ones, remains mostly unexplored. In this paper, we construct a policy that achieves a low regret (i.e., square-root regret up to a log factor) in this scenario for the case where the agent has perfect-knowledge about its own expected rewards for each bandit arm. We design our policy by first constructing an estimator for the agent's expected reward for each bandit arm. Since our estimator uses as data the sequence of incentives offered and subsequently chosen arms, the principal's estimation can be regarded as an analogy of online inverse optimization in MAB's. Next we construct a policy that we prove achieves a low regret by deriving finite-sample concentration bounds for our estimator. We conclude with numerical simulations demonstrating the applicability of our policy to real-life setting from collaborative transportation planning.
We study low sample complexity mechanisms in participatory budgeting (PB), where each voter votes for a preferred allocation of funds to various projects, subject to project costs and total spending constraints. We analyze the distortion that PB mechanisms introduce relative to the minimum-social-cost outcome in expectation. The Random Dictator mechanism for this problem obtains a distortion of 2. In a special case where every voter votes for exactly one project, [Fain et al '17] obtain a distortion of 4/3 We show that when PB outcomes are determined as any convex combination of the votes of two voters, the distortion is 2. When three uniformly randomly sampled votes are used, we give a PB mechanism that obtains a distortion of at most 1.66, thus breaking the barrier of 2 with the smallest possible sample complexity. We give a randomized Nash bargaining scheme where two uniformly randomly chosen voters bargain with the disagreement point as the vote of a voter chosen uniformly at random. This mechanism has a distortion of at most 1.66. We provide a lower bound of 1.38 for the distortion of this scheme. Further, we show that PB mechanisms that output a median of the votes of three voters chosen uniformly at random have a distortion of at most 1.80.
Treatment effect estimation under unconfoundedness is a fundamental task in causal inference. In response to the challenge of analyzing high-dimensional datasets collected in substantive fields such as epidemiology, genetics, economics, and social sciences, many methods for treatment effect estimation with high-dimensional nuisance parameters (the outcome regression and the propensity score) have been developed in recent years. However, it is still unclear what is the necessary and sufficient sparsity condition on the nuisance parameters for the treatment effect to be $\sqrt{n}$-estimable. In this paper, we propose a new Double-Calibration strategy that corrects the estimation bias of the nuisance parameter estimates computed by regularized high-dimensional techniques and demonstrate that the corresponding Doubly-Calibrated estimator achieves $1 / \sqrt{n}$-rate as long as one of the nuisance parameters is sparse with sparsity below $\sqrt{n} / \log p$, where $p$ denotes the ambient dimension of the covariates, whereas the other nuisance parameter can be arbitrarily complex and completely misspecified. The Double-Calibration strategy can also be applied to settings other than treatment effect estimation, e.g. regression coefficient estimation in the presence of diverging number of controls in a semiparametric partially linear model.
We give a simple characterization of which functions can be computed deterministically by anonymous processes in dynamic networks, depending on the number of leaders in the network. In addition, we provide efficient distributed algorithms for computing all such functions assuming minimal or no knowledge about the network. Each of our algorithms comes in two versions: one that terminates with the correct output and a faster one that stabilizes on the correct output without explicit termination. Notably, these are the first deterministic algorithms whose running times scale linearly with both the number of processes and a parameter of the network which we call "dynamic disconnectivity" (meaning that our dynamic networks do not necessarily have to be connected at all times). We also provide matching lower bounds, showing that all our algorithms are asymptotically optimal for any fixed number of leaders. While most of the existing literature on anonymous dynamic networks relies on classical mass-distribution techniques, our work makes use of a recently introduced combinatorial structure called "history tree", also developing its theory in new directions. Among other contributions, our results make definitive progress on two popular fundamental problems for anonymous dynamic networks: leaderless Average Consensus (i.e., computing the mean value of input numbers distributed among the processes) and multi-leader Counting (i.e., determining the exact number of processes in the network). In fact, our approach unifies and improves upon several independent lines of research on anonymous networks, including Nedic et al., IEEE Trans. Automat. Contr. 2009; Olshevsky, SIAM J. Control Optim. 2017; Kowalski-Mosteiro, ICALP 2019, SPAA 2021; Di Luna-Viglietta, FOCS 2022.
Linear inverse problems arise in diverse engineering fields especially in signal and image reconstruction. The development of computational methods for linear inverse problems with sparsity tool is one of the recent trends in this area. The so-called optimal $k$-thresholding is a newly introduced method for sparse optimization and linear inverse problems. Compared to other sparsity-aware algorithms, the advantage of optimal $k$-thresholding method lies in that it performs thresholding and error metric reduction simultaneously and thus works stably and robustly for solving medium-sized linear inverse problems. However, the runtime of this method remains high when the problem size is relatively large. The purpose of this paper is to propose an acceleration strategy for this method. Specifically, we propose a heavy-ball-based optimal $k$-thresholding (HBOT) algorithm and its relaxed variants for sparse linear inverse problems. The convergence of these algorithms is shown under the restricted isometry property. In addition, the numerical performance of the heavy-ball-based relaxed optimal $k$-thresholding pursuit (HBROTP) has been studied, and simulations indicate that HBROTP admits robust capability for signal and image reconstruction even in noisy environments.
Optimization is a key tool for scientific and engineering applications, however, in the presence of models affected by uncertainty, the optimization formulation needs to be extended to consider statistics of the quantity of interest. Optimization under uncertainty (OUU) deals with this endeavor and requires uncertainty quantification analyses at several design locations. The cost of OUU is proportional to the cost of performing a forward uncertainty analysis at each design location visited, which makes the computational burden too high for high-fidelity simulations with significant computational cost. From a high-level standpoint, an OUU workflow typically has two main components: an inner loop strategy for the computation of statistics of the quantity of interest, and an outer loop optimization strategy tasked with finding the optimal design, given a merit function based on the inner loop statistics. In this work, we propose to alleviate the cost of the inner loop uncertainty analysis by leveraging the so-called Multilevel Monte Carlo (MLMC) method. MLMC has the potential of drastically reducing the computational cost by allocating resources over multiple models with varying accuracy and cost. The resource allocation problem in MLMC is formulated by minimizing the computational cost given a target variance for the estimator. We consider MLMC estimators for statistics usually employed in OUU workflows and solve the corresponding allocation problem. For the outer loop, we consider a derivative-free optimization strategy implemented in the SNOWPAC library; our novel strategy is implemented and released in the Dakota software toolkit. We discuss several numerical test cases to showcase the features and performance of our novel approach with respect to the single fidelity counterpart, based on standard Monte Carlo evaluation of statistics.