This paper studies the estimation and inference of treatment histories in panel data settings when treatments change dynamically over time. We propose a method that allows for (i) treatments to be assigned dynamically over time based on high-dimensional covariates, past outcomes and treatments; (ii) outcomes and time-varying covariates to depend on treatment trajectories; (iii) heterogeneity of treatment effects. Our approach recursively projects potential outcomes' expectations on past histories. It then controls the bias by balancing dynamically observable characteristics. We study the asymptotic and numerical properties of the estimator and illustrate the benefits of the procedure in an empirical application.
We present a robust deep incremental learning framework for regression tasks on financial temporal tabular datasets which is built upon the incremental use of commonly available tabular and time series prediction models to adapt to distributional shifts typical of financial datasets. The framework uses a simple basic building block (decision trees) to build self-similar models of any required complexity to deliver robust performance under adverse situations such as regime changes, fat-tailed distributions, and low signal-to-noise ratios. As a detailed study, we demonstrate our scheme using XGBoost models trained on the Numerai dataset and show that a two layer deep ensemble of XGBoost models over different model snapshots delivers high quality predictions under different market regimes. We also show that the performance of XGBoost models with different number of boosting rounds in three scenarios (small, standard and large) is monotonically increasing with respect to model size and converges towards the generalisation upper bound. We also evaluate the robustness of the model under variability of different hyperparameters, such as model complexity and data sampling settings. Our model has low hardware requirements as no specialised neural architectures are used and each base model can be independently trained in parallel.
We consider the problem of sequential change detection, where the goal is to design a scheme for detecting any changes in a parameter or functional $\theta$ of the data stream distribution that has small detection delay, but guarantees control on the frequency of false alarms in the absence of changes. In this paper, we describe a simple reduction from sequential change detection to sequential estimation using confidence sequences: we begin a new $(1-\alpha)$-confidence sequence at each time step, and proclaim a change when the intersection of all active confidence sequences becomes empty. We prove that the average run length is at least $1/\alpha$, resulting in a change detection scheme with minimal structural assumptions~(thus allowing for possibly dependent observations, and nonparametric distribution classes), but strong guarantees. Our approach bears an interesting parallel with the reduction from change detection to sequential testing of Lorden (1971) and the e-detector of Shin et al. (2022).
Human ecological success relies on our characteristic ability to flexibly self-organize into cooperative social groups, the most successful of which employ substantial specialization and division of labor. Unlike most other animals, humans learn by trial and error during their lives what role to take on. However, when some critical roles are more attractive than others, and individuals are self-interested, then there is a social dilemma: each individual would prefer others take on the critical but unremunerative roles so they may remain free to take one that pays better. But disaster occurs if all act thusly and a critical role goes unfilled. In such situations learning an optimum role distribution may not be possible. Consequently, a fundamental question is: how can division of labor emerge in groups of self-interested lifetime-learning individuals? Here we show that by introducing a model of social norms, which we regard as emergent patterns of decentralized social sanctioning, it becomes possible for groups of self-interested individuals to learn a productive division of labor involving all critical roles. Such social norms work by redistributing rewards within the population to disincentivize antisocial roles while incentivizing prosocial roles that do not intrinsically pay as well as others.
This paper introduces an innovative method for conducting conditional independence testing in high-dimensional data, facilitating the automated discovery of significant associations within distinct subgroups of a population, all while controlling the false discovery rate. This is achieved by expanding upon the model-X knockoff filter to provide more informative inferences. Our enhanced inferences can help explain sample heterogeneity and uncover interactions, making better use of the capabilities offered by modern machine learning models. Specifically, our method is able to leverage any model for the identification of data-driven hypotheses pertaining to interesting population subgroups. Then, it rigorously test these hypotheses without succumbing to selection bias. Importantly, our approach is efficient and does not require sample splitting. We demonstrate the effectiveness of our method through simulations and numerical experiments, using data derived from a randomized experiment featuring multiple treatment variables.
Testing cross-sectional independence in panel data models is of fundamental importance in econometric analysis with high-dimensional panels. Recently, econometricians began to turn their attention to the problem in the presence of serial dependence. The existing procedure for testing cross-sectional independence with serial correlation is based on the sum of the sample cross-sectional correlations, which generally performs well when the alternative has dense cross-sectional correlations, but suffers from low power against sparse alternatives. To deal with sparse alternatives, we propose a test based on the maximum of the squared sample cross-sectional correlations. Furthermore, we propose a combined test to combine the p-values of the max based and sum based tests, which performs well under both dense and sparse alternatives. The combined test relies on the asymptotic independence of the max based and sum based test statistics, which we show rigorously. We show that the proposed max based and combined tests have attractive theoretical properties and demonstrate the superior performance via extensive simulation results. We apply the two new tests to analyze the weekly returns on the securities in the S\&P 500 index under the Fama-French three-factor model, and confirm the usefulness of the proposed combined test in detecting cross-sectional independence.
Mediation analysis is widely used in health science research to evaluate the extent to which an intermediate variable explains an observed exposure-outcome relationship. However, the validity of analysis can be compromised when the exposure is measured with error. Motivated by the Health Professionals Follow-up Study (HPFS), we investigate the impact of exposure measurement error on assessing mediation with a survival outcome, based on the Cox proportional hazards outcome model. When the outcome is rare and there is no exposure-mediator interaction, we show that the uncorrected estimators of the natural indirect and direct effects can be biased into either direction, but the uncorrected estimator of the mediation proportion is approximately unbiased as long as the measurement error is not large or the mediator-exposure association is not strong. We develop ordinary regression calibration and risk set regression calibration approaches to correct the exposure measurement error-induced bias when estimating mediation effects and allowing for an exposure-mediator interaction in the Cox outcome model. The proposed approaches require a validation study to characterize the measurement error process. We apply the proposed approaches to the HPFS (1986-2016) to evaluate extent to which reduced body mass index mediates the protective effect of vigorous physical activity on the risk of cardiovascular diseases, and compare the finite-sample properties of the proposed estimators via simulations.
We present a novel computational model for the dynamics of alveolar recruitment/derecruitment (RD), which reproduces the underlying characteristics typically observed in injured lungs. The basic idea is a pressure- and time-dependent variation of the stress-free reference volume in reduced dimensional viscoelastic elements representing the acinar tissue. We choose a variable reference volume triggered by critical opening and closing pressures in a time-dependent manner from a straightforward mechanical point of view. In the case of (partially and progressively) collapsing alveolar structures, the volume available for expansion during breathing reduces and vice versa, eventually enabling consideration of alveolar collapse and reopening in our model. We further introduce a method for patient-specific determination of the underlying critical parameters of the new alveolar RD dynamics when integrated into the tissue elements, referred to as terminal units, of a spatially resolved physics-based lung model that simulates the human respiratory system in an anatomically correct manner. Relevant patient-specific parameters of the terminal units are herein determined based on medical image data and the macromechanical behavior of the lung during artificial ventilation. We test the whole modeling approach for a real-life scenario by applying it to the clinical data of a mechanically ventilated patient. The generated lung model is capable of reproducing clinical measurements such as tidal volume and pleural pressure during various ventilation maneuvers. We conclude that this new model is an important step toward personalized treatment of ARDS patients by considering potentially harmful mechanisms - such as cyclic RD and overdistension - and might help in the development of relevant protective ventilation strategies to reduce ventilator-induced lung injury (VILI).
Conventional neural network elastoplasticity models are often perceived as lacking interpretability. This paper introduces a two-step machine-learning approach that returns mathematical models interpretable by human experts. In particular, we introduce a surrogate model where yield surfaces are expressed in terms of a set of single-variable feature mappings obtained from supervised learning. A postprocessing step is then used to re-interpret the set of single-variable neural network mapping functions into mathematical form through symbolic regression. This divide-and-conquer approach provides several important advantages. First, it enables us to overcome the scaling issue of symbolic regression algorithms. From a practical perspective, it enhances the portability of learned models for partial differential equation solvers written in different programming languages. Finally, it enables us to have a concrete understanding of the attributes of the materials, such as convexity and symmetries of models, through automated derivations and reasoning. Numerical examples have been provided, along with an open-source code to enable third-party validation.
Unmeasured confounding presents a common challenge in observational studies, potentially making standard causal parameters unidentifiable without additional assumptions. Given the increasing availability of diverse data sources, exploiting data linkage offers a potential solution to mitigate unmeasured confounding within a primary study of interest. However, this approach often introduces selection bias, as data linkage is feasible only for a subset of the study population. To address this concern, we explore three nonparametric identification strategies under the assumption that a unit' s inclusion in the linked cohort is determined solely by the observed confounders, while acknowledging that the ignorability assumption may depend on some partially unobserved covariates. The existence of multiple identification strategies motivates the development of estimators that effectively capture distinct components of the observed data distribution. Appropriately combining these estimators yields triply robust estimators for the average treatment effect. These estimators remain consistent if at least one of the three distinct parts of the observed data law is correct. Moreover, they are locally efficient if all the models are correctly specified. We evaluate the proposed estimators using simulation studies and real data analysis.
Current physics-informed (standard or operator) neural networks still rely on accurately learning the initial conditions of the system they are solving. In contrast, standard numerical methods evolve such initial conditions without needing to learn these. In this study, we propose to improve current physics-informed deep learning strategies such that initial conditions do not need to be learned and are represented exactly in the predicted solution. Moreover, this method guarantees that when a DeepONet is applied multiple times to time step a solution, the resulting function is continuous.