亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Diferentially private (DP) synthetic datasets are a powerful approach for training machine learning models while respecting the privacy of individual data providers. The effect of DP on the fairness of the resulting trained models is not yet well understood. In this contribution, we systematically study the effects of differentially private synthetic data generation on classification. We analyze disparities in model utility and bias caused by the synthetic dataset, measured through algorithmic fairness metrics. Our first set of results show that although there seems to be a clear negative correlation between privacy and utility (the more private, the less accurate) across all data synthesizers we evaluated, more privacy does not necessarily imply more bias. Additionally, we assess the effects of utilizing synthetic datasets for model training and model evaluation. We show that results obtained on synthetic data can misestimate the actual model performance when it is deployed on real data. We hence advocate on the need for defining proper testing protocols in scenarios where differentially private synthetic datasets are utilized for model training and evaluation.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · MoDELS · ML · contrastive · Machine Learning ·
2021 年 8 月 20 日

Machine learning (ML) models used in medical imaging diagnostics can be vulnerable to a variety of privacy attacks, including membership inference attacks, that lead to violations of regulations governing the use of medical data and threaten to compromise their effective deployment in the clinic. In contrast to most recent work in privacy-aware ML that has been focused on model alteration and post-processing steps, we propose here a novel and complementary scheme that enhances the security of medical data by controlling the data sharing process. We develop and evaluate a privacy defense protocol based on using a generative adversarial network (GAN) that allows a medical data sourcer (e.g. a hospital) to provide an external agent (a modeler) a proxy dataset synthesized from the original images, so that the resulting diagnostic systems made available to model consumers is rendered resilient to privacy attackers. We validate the proposed method on retinal diagnostics AI used for diabetic retinopathy that bears the risk of possibly leaking private information. To incorporate concerns of both privacy advocates and modelers, we introduce a metric to evaluate privacy and utility performance in combination, and demonstrate, using these novel and classical metrics, that our approach, by itself or in conjunction with other defenses, provides state of the art (SOTA) performance for defending against privacy attacks.

Recent work has shown that the performance of machine learning models can vary substantially when models are evaluated on data drawn from a distribution that is close to but different from the training distribution. As a result, predicting model performance on unseen distributions is an important challenge. Our work connects techniques from domain adaptation and predictive uncertainty literature, and allows us to predict model accuracy on challenging unseen distributions without access to labeled data. In the context of distribution shift, distributional distances are often used to adapt models and improve their performance on new domains, however accuracy estimation, or other forms of predictive uncertainty, are often neglected in these investigations. Through investigating a wide range of established distributional distances, such as Frechet distance or Maximum Mean Discrepancy, we determine that they fail to induce reliable estimates of performance under distribution shift. On the other hand, we find that the difference of confidences (DoC) of a classifier's predictions successfully estimates the classifier's performance change over a variety of shifts. We specifically investigate the distinction between synthetic and natural distribution shifts and observe that despite its simplicity DoC consistently outperforms other quantifications of distributional difference. $DoC$ reduces predictive error by almost half ($46\%$) on several realistic and challenging distribution shifts, e.g., on the ImageNet-Vid-Robust and ImageNet-Rendition datasets.

This paper studies a distributed multi-agent convex optimization problem. The system comprises multiple agents in this problem, each with a set of local data points and an associated local cost function. The agents are connected to a server, and there is no inter-agent communication. The agents' goal is to learn a parameter vector that optimizes the aggregate of their local costs without revealing their local data points. In principle, the agents can solve this problem by collaborating with the server using the traditional distributed gradient-descent method. However, when the aggregate cost is ill-conditioned, the gradient-descent method (i) requires a large number of iterations to converge, and (ii) is highly unstable against process noise. We propose an iterative pre-conditioning technique to mitigate the deleterious effects of the cost function's conditioning on the convergence rate of distributed gradient-descent. Unlike the conventional pre-conditioning techniques, the pre-conditioner matrix in our proposed technique updates iteratively to facilitate implementation on the distributed network. In the distributed setting, we provably show that the proposed algorithm converges linearly with an improved rate of convergence than the traditional and adaptive gradient-descent methods. Additionally, for the special case when the minimizer of the aggregate cost is unique, our algorithm converges superlinearly. We demonstrate our algorithm's superior performance compared to prominent distributed algorithms for solving real logistic regression problems and emulating neural network training via a noisy quadratic model, thereby signifying the proposed algorithm's efficiency for distributively solving non-convex optimization. Moreover, we empirically show that the proposed algorithm results in faster training without compromising the generalization performance.

Generative Adversarial Networks (GANs) are typically trained to synthesize data, from images and more recently tabular data, under the assumption of directly accessible training data. Recently, federated learning (FL) is an emerging paradigm that features decentralized learning on client's local data with a privacy-preserving capability. And, while learning GANs to synthesize images on FL systems has just been demonstrated, it is unknown if GANs for tabular data can be learned from decentralized data sources. Moreover, it remains unclear which distributed architecture suits them best. Different from image GANs, state-of-the-art tabular GANs require prior knowledge on the data distribution of each (discrete and continuous) column to agree on a common encoding -- risking privacy guarantees. In this paper, we propose Fed-TGAN, the first Federated learning framework for Tabular GANs. To effectively learn a complex tabular GAN on non-identical participants, Fed-TGAN designs two novel features: (i) a privacy-preserving multi-source feature encoding for model initialization; and (ii) table similarity aware weighting strategies to aggregate local models for countering data skew. We extensively evaluate the proposed Fed-TGAN against variants of decentralized learning architectures on four widely used datasets. Results show that Fed-TGAN accelerates training time per epoch up to 200% compared to the alternative architectures, for both IID and Non-IID data. Overall, Fed-TGAN not only stabilizes the training loss, but also achieves better similarity between generated and original data.

Differential Privacy (DP) provides an elegant mathematical framework for defining a provable disclosure risk in the presence of arbitrary adversaries; it guarantees that whether an individual is in a database or not, the results of a DP procedure should be similar in terms of their probability distribution. While DP mechanisms are provably effective in protecting privacy, they often negatively impact the utility of the query responses, statistics and/or analyses that come as outputs from these mechanisms. To address this problem, we use ideas from the area of robust statistics which aims at reducing the influence of outlying observations on statistical inference. Based on the preliminary known links between differential privacy and robust statistics, we modify the objective perturbation mechanism by making use of a new bounded function and define a bounded M-Estimator with adequate statistical properties. The resulting privacy mechanism, named "Perturbed M-Estimation", shows important potential in terms of improved statistical utility of its outputs as suggested by some preliminary results. These results consequently support the need to further investigate the use of robust statistical tools for differential privacy.

A key challenge of big data analytics is how to collect a large volume of (labeled) data. Crowdsourcing aims to address this challenge via aggregating and estimating high-quality data (e.g., sentiment label for text) from pervasive clients/users. Existing studies on crowdsourcing focus on designing new methods to improve the aggregated data quality from unreliable/noisy clients. However, the security aspects of such crowdsourcing systems remain under-explored to date. We aim to bridge this gap in this work. Specifically, we show that crowdsourcing is vulnerable to data poisoning attacks, in which malicious clients provide carefully crafted data to corrupt the aggregated data. We formulate our proposed data poisoning attacks as an optimization problem that maximizes the error of the aggregated data. Our evaluation results on one synthetic and two real-world benchmark datasets demonstrate that the proposed attacks can substantially increase the estimation errors of the aggregated data. We also propose two defenses to reduce the impact of malicious clients. Our empirical results show that the proposed defenses can substantially reduce the estimation errors of the data poisoning attacks.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

Train machine learning models on sensitive user data has raised increasing privacy concerns in many areas. Federated learning is a popular approach for privacy protection that collects the local gradient information instead of real data. One way to achieve a strict privacy guarantee is to apply local differential privacy into federated learning. However, previous works do not give a practical solution due to three issues. First, the noisy data is close to its original value with high probability, increasing the risk of information exposure. Second, a large variance is introduced to the estimated average, causing poor accuracy. Last, the privacy budget explodes due to the high dimensionality of weights in deep learning models. In this paper, we proposed a novel design of local differential privacy mechanism for federated learning to address the abovementioned issues. It is capable of making the data more distinct from its original value and introducing lower variance. Moreover, the proposed mechanism bypasses the curse of dimensionality by splitting and shuffling model updates. A series of empirical evaluations on three commonly used datasets, MNIST, Fashion-MNIST and CIFAR-10, demonstrate that our solution can not only achieve superior deep learning performance but also provide a strong privacy guarantee at the same time.

Machine Learning is a widely-used method for prediction generation. These predictions are more accurate when the model is trained on a larger dataset. On the other hand, the data is usually divided amongst different entities. For privacy reasons, the training can be done locally and then the model can be safely aggregated amongst the participants. However, if there are only two participants in \textit{Collaborative Learning}, the safe aggregation loses its power since the output of the training already contains much information about the participants. To resolve this issue, they must employ privacy-preserving mechanisms, which inevitably affect the accuracy of the model. In this paper, we model the training process as a two-player game where each player aims to achieve a higher accuracy while preserving its privacy. We introduce the notion of \textit{Price of Privacy}, a novel approach to measure the effect of privacy protection on the accuracy of the model. We develop a theoretical model for different player types, and we either find or prove the existence of a Nash Equilibrium with some assumptions. Moreover, we confirm these assumptions via a Recommendation Systems use case: for a specific learning algorithm, we apply three privacy-preserving mechanisms on two real-world datasets. Finally, as a complementary work for the designed game, we interpolate the relationship between privacy and accuracy for this use case and present three other methods to approximate it in a real-world scenario.

北京阿比特科技有限公司