Letter-to-letter transducers are a standard formalism for modeling reactive systems. Often, two transducers that model similar systems differ locally from one another, by behaving similarly, up to permutations of the input and output letters within "rounds". In this work, we introduce and study notions of simulation by rounds and equivalence by rounds of transducers. In our setting, words are partitioned to consecutive subwords of a fixed length $k$, called rounds. Then, a transducer $\mathcal{T}_1$ is $k$-round simulated by transducer $\mathcal{T}_2$ if, intuitively, for every input word $x$, we can permute the letters within each round in $x$, such that the output of $\mathcal{T}_2$ on the permuted word is itself a permutation of the output of $\mathcal{T}_1$ on $x$. Finally, two transducers are $k$-round equivalent if they simulate each other. We solve two main decision problems, namely whether $\mathcal{T}_2$ $k$-round simulates $\mathcal{T}_1$ (1) when $k$ is given as input, and (2) for an existentially quantified $k$. We demonstrate the usefulness of the definitions by applying them to process symmetry: a setting in which a permutation in the identities of processes in a multi-process system naturally gives rise to two transducers, whose $k$-round equivalence corresponds to stability against such permutations.
We present two approximate counting algorithms with $\widetilde{O}(n^{2-c}/\varepsilon^2)$ running time for some constant $c > 0$ and accuracy $\varepsilon$: (1) for the hard-core model when strong spatial mixing (SSM) is sufficiently fast; (2) for spin systems with SSM on planar graphs with quadratic growth, such as $\mathbb{Z}^2$. The latter algorithm also extends to (not necessarily planar) graphs with polynomial growth, such as $\mathbb{Z}^d$, albeit with a running time of the form $\widetilde{O}(n^2\varepsilon^{-2}/2^{c(\log n)^{1/d}})$ for some constant $c > 0$ and $d$ being the exponent of the polynomial growth. Our technique utilizes Weitz's self-avoiding walk tree (STOC, 2006) and the recent marginal sampler of Anand and Jerrum (SIAM J. Comput., 2022).
We study the problem of fair sequential decision making given voter preferences. In each round, a decision rule must choose a decision from a set of alternatives where each voter reports which of these alternatives they approve. Instead of going with the most popular choice in each round, we aim for proportional representation. We formalize this aim using axioms based on Proportional Justified Representation (PJR), which were proposed in the literature on multi-winner voting and were recently adapted to multi-issue decision making. The axioms require that every group of $\alpha\%$ of the voters, if it agrees in every round (i.e., approves a common alternative), then those voters must approve at least $\alpha\%$ of the decisions. A stronger version of the axioms requires that every group of $\alpha\%$ of the voters that agrees in a $\beta$ fraction of rounds must approve $\beta\cdot\alpha\%$ of the decisions. We show that three attractive voting rules satisfy axioms of this style. One of them (Sequential Phragm\'en) makes its decisions online, and the other two satisfy strengthened versions of the axioms but make decisions semi-online (Method of Equal Shares) or fully offline (Proportional Approval Voting). The first two are polynomial-time computable, and the latter is based on an NP-hard optimization, but it admits a polynomial-time local search algorithm that satisfies the same axiomatic properties. We present empirical results about the performance of these rules based on synthetic data and U.S. political elections. We also run experiments where votes are cast by preference models trained on user responses from the moral machine dataset about ethical dilemmas.
We explore the problem of imitation learning (IL) in the context of mean-field games (MFGs), where the goal is to imitate the behavior of a population of agents following a Nash equilibrium policy according to some unknown payoff function. IL in MFGs presents new challenges compared to single-agent IL, particularly when both the reward function and the transition kernel depend on the population distribution. In this paper, departing from the existing literature on IL for MFGs, we introduce a new solution concept called the Nash imitation gap. Then we show that when only the reward depends on the population distribution, IL in MFGs can be reduced to single-agent IL with similar guarantees. However, when the dynamics is population-dependent, we provide a novel upper-bound that suggests IL is harder in this setting. To address this issue, we propose a new adversarial formulation where the reinforcement learning problem is replaced by a mean-field control (MFC) problem, suggesting progress in IL within MFGs may have to build upon MFC.
In quasi-Monte Carlo methods, generating high-dimensional low discrepancy sequences by generator matrices is a popular and efficient approach. Historically, constructing or finding such generator matrices has been a hard problem. In particular, it is challenging to take advantage of the intrinsic structure of a given numerical problem to design samplers of low discrepancy in certain subsets of dimensions. To address this issue, we devise a greedy algorithm allowing us to translate desired net properties into linear constraints on the generator matrix entries. Solving the resulting integer linear program yields generator matrices that satisfy the desired net properties. We demonstrate that our method finds generator matrices in challenging settings, offering low discrepancy sequences beyond the limitations of classic constructions.
Unobserved confounding is a fundamental obstacle to establishing valid causal conclusions from observational data. Two complementary types of approaches have been developed to address this obstacle: obtaining identification using fortuitous external aids, such as instrumental variables or proxies, or by means of the ID algorithm, using Markov restrictions on the full data distribution encoded in graphical causal models. In this paper we aim to develop a synthesis of the former and latter approaches to identification in causal inference to yield the most general identification algorithm in multivariate systems currently known -- the proximal ID algorithm. In addition to being able to obtain nonparametric identification in all cases where the ID algorithm succeeds, our approach allows us to systematically exploit proxies to adjust for the presence of unobserved confounders that would have otherwise prevented identification. In addition, we outline a class of estimation strategies for causal parameters identified by our method in an important special case. We illustrate our approach by simulation studies and a data application.
We study a dynamic allocation problem in which $T$ sequentially arriving divisible resources are to be allocated to a number of agents with linear utilities. The marginal utilities of each resource to the agents are drawn stochastically from a known joint distribution, independently and identically across time, and the central planner makes immediate and irrevocable allocation decisions. Most works on dynamic resource allocation aim to maximize the utilitarian welfare, i.e., the efficiency of the allocation, which may result in unfair concentration of resources on certain high-utility agents while leaving others' demands under-fulfilled. In this paper, aiming at balancing efficiency and fairness, we instead consider a broad collection of welfare metrics, the H\"older means, which includes the Nash social welfare and the egalitarian welfare. To this end, we first study a fluid-based policy derived from a deterministic surrogate to the underlying problem and show that for all smooth H\"older mean welfare metrics it attains an $O(1)$ regret over the time horizon length $T$ against the hindsight optimum, i.e., the optimal welfare if all utilities were known in advance of deciding on allocations. However, when evaluated under the non-smooth egalitarian welfare, the fluid-based policy attains a regret of order $\Theta(\sqrt{T})$. We then propose a new policy built thereupon, called Backward Infrequent Re-solving with Thresholding ($\mathsf{BIRT}$), which consists of re-solving the deterministic surrogate problem at most $O(\log\log T)$ times. We prove the $\mathsf{BIRT}$ policy attains an $O(1)$ regret against the hindsight optimal egalitarian welfare, independently of the time horizon length $T$. We conclude by presenting numerical experiments to corroborate our theoretical claims and to illustrate the significant performance improvement against several benchmark policies.
In this work, we propose an extension of telescopic derivative operators for the DGSEM with Gauss nodes, and we prove that this formulation is equivalent to its usual matrix counterpart. Among other possible applications, this allows extending the stabilization methods already developed for Gauss-Lobatto nodes to Gauss nodes, also ensuring properties such as entropy stability while retaining their improved accuracy.
We focus on analyzing the classical stochastic projected gradient methods under a general dependent data sampling scheme for constrained smooth nonconvex optimization. We show the worst-case rate of convergence $\tilde{O}(t^{-1/4})$ and complexity $\tilde{O}(\varepsilon^{-4})$ for achieving an $\varepsilon$-near stationary point in terms of the norm of the gradient of Moreau envelope and gradient mapping. While classical convergence guarantee requires i.i.d. data sampling from the target distribution, we only require a mild mixing condition of the conditional distribution, which holds for a wide class of Markov chain sampling algorithms. This improves the existing complexity for the constrained smooth nonconvex optimization with dependent data from $\tilde{O}(\varepsilon^{-8})$ to $\tilde{O}(\varepsilon^{-4})$ with a significantly simpler analysis. We illustrate the generality of our approach by deriving convergence results with dependent data for stochastic proximal gradient methods, adaptive stochastic gradient algorithm AdaGrad and stochastic gradient algorithm with heavy ball momentum. As an application, we obtain first online nonnegative matrix factorization algorithms for dependent data based on stochastic projected gradient methods with adaptive step sizes and optimal rate of convergence.
Moving horizon estimation (MHE) is a widely studied state estimation approach in several practical applications. In the MHE problem, the state estimates are obtained via the solution of an approximated nonlinear optimization problem. However, this optimization step is known to be computationally complex. Given this limitation, this paper investigates the idea of iteratively preconditioned gradient-descent (IPG) to solve MHE problem with the aim of an improved performance than the existing solution techniques. To our knowledge, the preconditioning technique is used for the first time in this paper to reduce the computational cost and accelerate the crucial optimization step for MHE. The convergence guarantee of the proposed iterative approach for a class of MHE problems is presented. Additionally, sufficient conditions for the MHE problem to be convex are also derived. Finally, the proposed method is implemented on a unicycle localization example. The simulation results demonstrate that the proposed approach can achieve better accuracy with reduced computational costs.
Investigators, funders, and the public desire knowledge on topics and trends in publicly funded research but current efforts in manual categorization are limited in scale and understanding. We developed a semi-automated approach to extract and name research topics, and applied this to \$1.9B of NCI funding over 21 years in the radiological sciences to determine micro- and macro-scale research topics and funding trends. Our method relies on sequential clustering of existing biomedical-based word embeddings, naming using subject matter experts, and visualization to discover trends at a macroscopic scale above individual topics. We present results using 15 and 60 cluster topics, where we found that 2D projection of grant embeddings reveals two dominant axes: physics-biology and therapeutic-diagnostic. For our dataset, we found that funding for therapeutics- and physics-based research have outpaced diagnostics- and biology-based research, respectively. We hope these results may (1) give insight to funders on the appropriateness of their funding allocation, (2) assist investigators in contextualizing their work and explore neighboring research domains, and (3) allow the public to review where their tax dollars are being allocated.