亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we revisit the classical goodness-of-fit problems for univariate distributions; we propose a new testing procedure based on a characterisation of the uniform distribution. Asymptotic theory for the simple hypothesis case is provided in a Hilbert-Space setting, including the asymptotic null distribution as well as values for the first four cumulants of this distribution, which are used to fit a Pearson system of distributions as an approximation to the limit distribution. Numerical results indicate that the null distribution of the test converges quickly to its asymptotic distribution, making the critical values obtained using the Pearson system particularly useful. Consistency of the test is shown against any fixed alternative distribution and we derive the limiting behaviour under fixed alternatives with an application to power approximation. We demonstrate the applicability of the newly proposed test when testing composite hypotheses. A Monte Carlo power study compares the finite sample power performance of the newly proposed test to existing omnibus tests in both the simple and composite hypothesis settings. This power study includes results related to testing for the uniform, normal and Pareto distributions. The empirical results obtained indicate that the test is competitive. An application of the newly proposed test in financial modelling is also included.

相關內容

The need to avoid confident predictions on unfamiliar data has sparked interest in out-of-distribution (OOD) detection. It is widely assumed that Bayesian neural networks (BNNs) are well suited for this task, as the endowed epistemic uncertainty should lead to disagreement in predictions on outliers. In this paper, we question this assumption and show that proper Bayesian inference with function space priors induced by neural networks does not necessarily lead to good OOD detection. To circumvent the use of approximate inference, we start by studying the infinite-width case, where Bayesian inference can be exact due to the correspondence with Gaussian processes. Strikingly, the kernels induced under common architectural choices lead to uncertainties that do not reflect the underlying data generating process and are therefore unsuited for OOD detection. Importantly, we find this OOD behavior to be consistent with the corresponding finite-width networks. Desirable function space properties can be encoded in the prior in weight space, however, this currently only applies to a specified subset of the domain and thus does not inherently extend to OOD data. Finally, we argue that a trade-off between generalization and OOD capabilities might render the application of BNNs for OOD detection undesirable in practice. Overall, our study discloses fundamental problems when naively using BNNs for OOD detection and opens interesting avenues for future research.

New Vapnik and Chervonkis type concentration inequalities are derived for the empirical distribution of an independent random sample. Focus is on the maximal deviation over classes of Borel sets within a low probability region. The constants are explicit, enabling numerical comparisons.

In this paper, we consider several efficient data structures for the problem of sampling from a dynamically changing discrete probability distribution, where some prior information is known on the distribution of the rates, in particular the maximum and minimum rate, and where the number of possible outcomes N is large. We consider three basic data structures, the Acceptance-Rejection method, the Complete Binary Tree and the Alias method. These can be used as building blocks in a multi-level data structure, where at each of the levels, one of the basic data structures can be used, with the top level selecting a group of events, and the bottom level selecting an element from a group. Depending on assumptions on the distribution of the rates of outcomes, different combinations of the basic structures can be used. We prove that for particular data structures the expected time of sampling and update is constant when the rate distribution follows certain conditions. We show that for any distribution, combining a tree structure with the Acceptance-Rejection method, we have an expected time of sampling and update of $O\left(\log\log{r_{max}}/{r_{min}}\right)$ is possible, where $r_{max}$ is the maximum rate and $r_{min}$ the minimum rate. We also discuss an implementation of a Two Levels Acceptance-Rejection data structure, that allows expected constant time for sampling, and amortized constant time for updates, assuming that $r_{max}$ and $r_{min}$ are known and the number of events is sufficiently large. We also present an experimental verification, highlighting the limits given by the constraints of a real-life setting.

This article studies global testing of the slope function in functional linear regression model in the framework of reproducing kernel Hilbert space. We propose a new testing statistic based on smoothness regularization estimators. The asymptotic distribution of the testing statistic is established under null hypothesis. It is shown that the null asymptotic distribution is determined jointly by the reproducing kernel and the covariance function. Our theoretical analysis shows that the proposed testing is consistent over a class of smooth local alternatives. Despite the generality of the method of regularization, we show the procedure is easily implementable. Numerical examples are provided to demonstrate the empirical advantages over the competing methods.

In this article, we introduce mixture representations for likelihood ratio ordered distributions. Essentially, the ratio of two probability densities, or mass functions, is monotone if and only if one can be expressed as a mixture of one-sided truncations of the other. To illustrate the practical value of the mixture representations, we address the problem of density estimation for likelihood ratio ordered distributions. In particular, we propose a nonparametric Bayesian solution which takes advantage of the mixture representations. The prior distribution is constructed from Dirichlet process mixtures and has large support on the space of pairs of densities satisfying the monotone ratio constraint. With a simple modification to the prior distribution, we can test the equality of two distributions against the alternative of likelihood ratio ordering. We develop a Markov chain Monte Carlo algorithm for posterior inference and demonstrate the method in a biomedical application.

We develop a new framework for embedding (joint) probability distributions in tensor product reproducing kernel Hilbert spaces (RKHS). This framework accommodates a low-dimensional, positive, and normalized model of a Radon-Nikodym derivative, estimated from sample sizes of up to several million data points, alleviating the inherent limitations of RKHS modeling. Well-defined normalized and positive conditional distributions are natural by-products to our approach. The embedding is fast to compute and naturally accommodates learning problems ranging from prediction to classification. The theoretical findings are supplemented by favorable numerical results.

We advocate for a practical Maximum Likelihood Estimation (MLE) approach towards designing loss functions for regression and forecasting, as an alternative to the typical approach of direct empirical risk minimization on a specific target metric. The MLE approach is better suited to capture inductive biases such as prior domain knowledge in datasets, and can output post-hoc estimators at inference time that can optimize different types of target metrics. We present theoretical results to demonstrate that our approach is competitive with any estimator for the target metric under some general conditions. In two example practical settings, Poisson and Pareto regression, we show that our competitive results can be used to prove that the MLE approach has better excess risk bounds than directly minimizing the target metric. We also demonstrate empirically that our method instantiated with a well-designed general purpose mixture likelihood family can obtain superior performance for a variety of tasks across time-series forecasting and regression datasets with different data distributions.

We consider sequential hypothesis testing based on observations which are received in groups of random size. The observations are assumed to be independent both within and between the groups. We assume that the group sizes are independent and their distributions are known, and that the groups are formed independently of the observations. We are concerned with a problem of testing a simple hypothesis against a simple alternative. For any (group-) sequential test, we take into account the following three characteristics: its type I and type II error probabilities and the average cost of observations. Under mild conditions, we characterize the structure of sequential tests minimizing the average cost of observations among all sequential tests whose type I and type II error probabilities do not exceed some prescribed levels.

We consider a Johnson-N\'ed\'elec FEM-BEM coupling, which is a direct and non-symmetric coupling of finite and boundary element methods, in order to solve interface problems for the magnetostatic Maxwell's equations with the magnetic vector potential ansatz. In the FEM-domain, equations may be non-linear, whereas they are exclusively linear in the BEM-part to guarantee the existence of a fundamental solution. First, the weak problem is formulated in quotient spaces to avoid resolving to a saddle point problem. Second, we establish in this setting well-posedness of the arising problem using the framework of Lipschitz and strongly monotone operators as well as a stability result for a special type of non-linearity, which is typically considered in magnetostatic applications. Then, the discretization is performed in the isogeometric context, i.e., the same type of basis functions that are used for geometry design are considered as ansatz functions for the discrete setting. In particular, NURBS are employed for geometry considerations, and B-Splines, which can be understood as a special type of NURBS, for analysis purposes. In this context, we derive a priori estimates w.r.t. h-refinement, and point out to an interesting behavior of BEM, which consists in an amelioration of the convergence rates, when a functional of the solution is evaluated in the exterior BEM-domain. This improvement may lead to a doubling of the convergence rate under certain assumptions. Finally, we end the paper with a numerical example to illustrate the theoretical results, along with a conclusion and an outlook.

Discrete random structures are important tools in Bayesian nonparametrics and the resulting models have proven effective in density estimation, clustering, topic modeling and prediction, among others. In this paper, we consider nested processes and study the dependence structures they induce. Dependence ranges between homogeneity, corresponding to full exchangeability, and maximum heterogeneity, corresponding to (unconditional) independence across samples. The popular nested Dirichlet process is shown to degenerate to the fully exchangeable case when there are ties across samples at the observed or latent level. To overcome this drawback, inherent to nesting general discrete random measures, we introduce a novel class of latent nested processes. These are obtained by adding common and group-specific completely random measures and, then, normalising to yield dependent random probability measures. We provide results on the partition distributions induced by latent nested processes, and develop an Markov Chain Monte Carlo sampler for Bayesian inferences. A test for distributional homogeneity across groups is obtained as a by product. The results and their inferential implications are showcased on synthetic and real data.

北京阿比特科技有限公司