The aim of this paper is to show the relationship that lies in the fact of a person being right or left handed, in their skateboarding stance. Starting from the null hypothesis that there is no relationship, the Pearson's X^2 with Yates correction tests, as well as its respective p-value will be used to test the hypothesis. It will also be calculated and analyzed the residuals, Cramer's V and the Risk and Odds Ratios, with their respective confidence intervals to know the intensity of the association.
In the paper we argue that performance of the classifiers based on Empirical Risk Minimization (ERM) for positive unlabeled data, which are designed for case-control sampling scheme may significantly deteriorate when applied to a single-sample scenario. We reveal why their behavior depends, in all but very specific cases, on the scenario. Also, we introduce a single-sample case analogue of the popular non-negative risk classifier designed for case-control data and compare its performance with the original proposal. We show that the significant differences occur between them, especiall when half or more positive of observations are labeled. The opposite case when ERM minimizer designed for the case-control case is applied for single-sample data is also considered and similar conclusions are drawn. Taking into account difference of scenarios requires a sole, but crucial, change in the definition of the Empirical Risk.
This paper considers a crowdsourced delivery (CSD) system that effectively utilizes the existing trips to fulfill parcel delivery as a matching problem between CSD drivers and delivery tasks. This matching problem has two major challenges. First, it is a large-scale combinatorial optimization problem that is hard to solve in a reasonable computational time. Second, the evaluation of the objective function for socially optimal matching contains the utility of drivers for performing the tasks, which is generally unobservable private information. To address these challenges, this paper proposes a hierarchical distribution mechanism of CSD tasks that decomposes the matching problem into the task partition (master problem) and individual task-driver matching within smaller groups of drivers (sub-problems). We incorporate an auction mechanism with truth-telling and efficiency into the sub-problems so that the drivers' perceived utilities are revealed through their bids. Furthermore, we formulate the master problem as a fluid model based on continuously approximated decision variables. By exploiting the random utility framework, we analytically represent the objective function of the problem using continuous variables, without explicitly knowing the drivers' utilities. The numerical experiment shows that the proposed approach solved large-scale matching problems at least 100 times faster than a naive LP solver and approximated the original objective value with errors of less than 1%.
The neural architectures of language models are becoming increasingly complex, especially that of Transformers, based on the attention mechanism. Although their application to numerous natural language processing tasks has proven to be very fruitful, they continue to be models with little or no interpretability and explainability. One of the tasks for which they are best suited is the encoding of the contextual sense of words using contextualized embeddings. In this paper we propose a transparent, interpretable, and linguistically motivated strategy for encoding the contextual sense of words by modeling semantic compositionality. Particular attention is given to dependency relations and semantic notions such as selection preferences and paradigmatic classes. A partial implementation of the proposed model is carried out and compared with Transformer-based architectures for a given semantic task, namely the similarity calculation of word senses in context. The results obtained show that it is possible to be competitive with linguistically motivated models instead of using the black boxes underlying complex neural architectures.
Ecosystems are ubiquitous but trust within them is not guaranteed. Trust is paramount because stakeholders within an ecosystem must collaborate to achieve their objectives. With the twin transitions, digital transformation to go in parallel with green transition, accelerating the deployment of autonomous systems, trust has become even more critical to ensure that the deployed technology creates value. To address this need, we propose an ecosystem of trust approach to support deployment of technology by enabling trust among and between stakeholders, technologies and infrastructures, institutions and governance, and the artificial and natural environments in an ecosystem. The approach can help the stakeholders in the ecosystem to create, deliver, and receive value by addressing their concerns and aligning their objectives. We present an autonomous, zero emission ferry as a real world use case to demonstrate the approach from a stakeholder perspective. We argue that assurance, defined as grounds for justified confidence originated from evidence and knowledge, is a prerequisite to enable the approach. Assurance provides evidence and knowledge that are collected, analysed, and communicated in a systematic, targeted, and meaningful way. Assurance can enable the approach to help successfully deploy technology by ensuring that risk is managed, trust is shared, and value is created.
When two stiff inclusions are closely located, the gradient of the solution may become arbitrarily large as the distance between two inclusions tends to zero. Since blow-up of the gradient occurs in the narrow region, fine meshes should be required to compute the gradient. Thus, it is a challenging problem to numerically compute the gradient. Recent studies have shown that the major singularity can be extracted in an explicit way, so it suffices to compute the residual term for which only regular meshes are required. In this paper, we show through numerical simulations that the characterization of the singular term method can be efficiently used for the computation of the gradient when two strongly convex stiff domains of general shapes are closely located.
Inspired by the success of WaveNet in multi-subject speech synthesis, we propose a novel neural network based on causal convolutions for multi-subject motion modeling and generation. The network can capture the intrinsic characteristics of the motion of different subjects, such as the influence of skeleton scale variation on motion style. Moreover, after fine-tuning the network using a small motion dataset for a novel skeleton that is not included in the training dataset, it is able to synthesize high-quality motions with a personalized style for the novel skeleton. The experimental results demonstrate that our network can model the intrinsic characteristics of motions well and can be applied to various motion modeling and synthesis tasks.
In real-world tasks, there is usually a large amount of unlabeled data and labeled data. The task of combining the two to learn is known as semi-supervised learning. Experts can use logical rules to label unlabeled data, but this operation is costly. The combination of perception and reasoning has a good effect in processing such semi-supervised tasks with domain knowledge. However, acquiring domain knowledge and the correction, reduction and generation of rules remain complex problems to be solved. Rough set theory is an important method for solving knowledge processing in information systems. In this paper, we propose a rule general abductive learning by rough set (RS-ABL). By transforming the target concept and sub-concepts of rules into information tables, rough set theory is used to solve the acquisition of domain knowledge and the correction, reduction and generation of rules at a lower cost. This framework can also generate more extensive negative rules to enhance the breadth of the knowledge base. Compared with the traditional semi-supervised learning method, RS-ABL has higher accuracy in dealing with semi-supervised tasks.
Experimental and observational studies often lead to spurious association between the outcome and independent variables describing the intervention, because of confounding to third-party factors. Even in randomized clinical trials, confounding might be unavoidable due to small sample sizes. Practically, this poses a problem, because it is either expensive to re-design and conduct a new study or even impossible to alleviate the contribution of some confounders due to e.g. ethical concerns. Here, we propose a method to consistently derive hypothetical studies that retain as many of the dependencies in the original study as mathematically possible, while removing any association of observed confounders to the independent variables. Using historic studies, we illustrate how the confounding-free scenario re-estimates the effect size of the intervention. The new effect size estimate represents a concise prediction in the hypothetical scenario which paves a way from the original data towards the design of future studies.
The trace plot is seldom used in meta-analysis, yet it is a very informative plot. In this article we define and illustrate what the trace plot is, and discuss why it is important. The Bayesian version of the plot combines the posterior density of tau, the between-study standard deviation, and the shrunken estimates of the study effects as a function of tau. With a small or moderate number of studies, tau is not estimated with much precision, and parameter estimates and shrunken study effect estimates can vary widely depending on the correct value of tau. The trace plot allows visualization of the sensitivity to tau along with a plot that shows which values of tau are plausible and which are implausible. A comparable frequentist or empirical Bayes version provides similar results. The concepts are illustrated using examples in meta-analysis and meta-regression; implementaton in R is facilitated in a Bayesian or frequentist framework using the bayesmeta and metafor packages, respectively.
This paper presents an experiment of automatically scoring handwritten descriptive answers in the trial tests for the new Japanese university entrance examination, which were made for about 120,000 examinees in 2017 and 2018. There are about 400,000 answers with more than 20 million characters. Although all answers have been scored by human examiners, handwritten characters are not labeled. We present our attempt to adapt deep neural network-based handwriting recognizers trained on a labeled handwriting dataset into this unlabeled answer set. Our proposed method combines different training strategies, ensembles multiple recognizers, and uses a language model built from a large general corpus to avoid overfitting into specific data. In our experiment, the proposed method records character accuracy of over 97% using about 2,000 verified labeled answers that account for less than 0.5% of the dataset. Then, the recognized answers are fed into a pre-trained automatic scoring system based on the BERT model without correcting misrecognized characters and providing rubric annotations. The automatic scoring system achieves from 0.84 to 0.98 of Quadratic Weighted Kappa (QWK). As QWK is over 0.8, it represents an acceptable similarity of scoring between the automatic scoring system and the human examiners. These results are promising for further research on end-to-end automatic scoring of descriptive answers.