亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a solution to the problem of spatio-temporal calibration for event cameras mounted on an onmi-directional vehicle. Different from traditional methods that typically determine the camera's pose with respect to the vehicle's body frame using alignment of trajectories, our approach leverages the kinematic correlation of two sets of linear velocity estimates from event data and wheel odometers, respectively. The overall calibration task consists of estimating the underlying temporal offset between the two heterogeneous sensors, and furthermore, recovering the extrinsic rotation that defines the linear relationship between the two sets of velocity estimates. The first sub-problem is formulated as an optimization one, which looks for the optimal temporal offset that maximizes a correlation measurement invariant to arbitrary linear transformation. Once the temporal offset is compensated, the extrinsic rotation can be worked out with an iterative closed-form solver that incrementally registers associated linear velocity estimates. The proposed algorithm is proved effective on both synthetic data and real data, outperforming traditional methods based on alignment of trajectories.

相關內容

Image completion techniques have made significant progress in filling missing regions (i.e., holes) in images. However, large-hole completion remains challenging due to limited structural information. In this paper, we address this problem by integrating explicit structural guidance into diffusion-based image completion, forming our structure-guided diffusion model (SGDM). It consists of two cascaded diffusion probabilistic models: structure and texture generators. The structure generator generates an edge image representing plausible structures within the holes, which is then used for guiding the texture generation process. To train both generators jointly, we devise a novel strategy that leverages optimal Bayesian denoising, which denoises the output of the structure generator in a single step and thus allows backpropagation. Our diffusion-based approach enables a diversity of plausible completions, while the editable edges allow for editing parts of an image. Our experiments on natural scene (Places) and face (CelebA-HQ) datasets demonstrate that our method achieves a superior or comparable visual quality compared to state-of-the-art approaches. The code is available for research purposes at //github.com/UdonDa/Structure_Guided_Diffusion_Model.

Query-Focused Meeting Summarization (QFMS) aims to generate a summary of a given meeting transcript conditioned upon a query. The main challenges for QFMS are the long input text length and sparse query-relevant information in the meeting transcript. In this paper, we propose a knowledge-enhanced two-stage framework called Knowledge-Aware Summarizer (KAS) to tackle the challenges. In the first stage, we introduce knowledge-aware scores to improve the query-relevant segment extraction. In the second stage, we incorporate query-relevant knowledge in the summary generation. Experimental results on the QMSum dataset show that our approach achieves state-of-the-art performance. Further analysis proves the competency of our methods in generating relevant and faithful summaries.

Robots must make and break contact to interact with the world and perform useful tasks. However, planning and control through contact remains a formidable challenge. In this work, we achieve real-time contact-implicit model predictive control with a surprisingly simple method: inverse dynamics trajectory optimization. While trajectory optimization with inverse dynamics is not new, we introduce a series of incremental innovations that collectively enable fast model predictive control on a variety of challenging manipulation and locomotion tasks. We implement these innovations in an open-source solver, and present a variety of simulation examples to support the effectiveness of the proposed approach. Additionally, we demonstrate contact-implicit model predictive control on hardware at over 100 Hz for a 20 degree-of-freedom bi-manual manipulation task.

We propose an ensemble score filter (EnSF) for solving high-dimensional nonlinear filtering problems with superior accuracy. A major drawback of existing filtering methods, e.g., particle filters or ensemble Kalman filters, is the low accuracy in handling high-dimensional and highly nonlinear problems. EnSF attacks this challenge by exploiting the score-based diffusion model, defined in a pseudo-temporal domain, to characterizing the evolution of the filtering density. EnSF stores the information of the recursively updated filtering density function in the score function, in stead of storing the information in a set of finite Monte Carlo samples (used in particle filters and ensemble Kalman filters). Unlike existing diffusion models that train neural networks to approximate the score function, we develop a training-free score estimation that uses mini-batch-based Monte Carlo estimator to directly approximate the score function at any pseudo-spatial-temporal location, which provides sufficient accuracy in solving high-dimensional nonlinear problems as well as saves tremendous amount of time spent on training neural networks. Another essential aspect of EnSF is its analytical update step, gradually incorporating data information into the score function, which is crucial in mitigating the degeneracy issue faced when dealing with very high-dimensional nonlinear filtering problems. High-dimensional Lorenz systems are used to demonstrate the performance of our method. EnSF provides surprisingly impressive performance in reliably tracking extremely high-dimensional Lorenz systems (up to 1,000,000 dimension) with highly nonlinear observation processes, which is a well-known challenging problem for existing filtering methods.

Diffusion models have become a popular approach for image generation and reconstruction due to their numerous advantages. However, most diffusion-based inverse problem-solving methods only deal with 2D images, and even recently published 3D methods do not fully exploit the 3D distribution prior. To address this, we propose a novel approach using two perpendicular pre-trained 2D diffusion models to solve the 3D inverse problem. By modeling the 3D data distribution as a product of 2D distributions sliced in different directions, our method effectively addresses the curse of dimensionality. Our experimental results demonstrate that our method is highly effective for 3D medical image reconstruction tasks, including MRI Z-axis super-resolution, compressed sensing MRI, and sparse-view CT. Our method can generate high-quality voxel volumes suitable for medical applications.

As the most essential property in a video, motion information is critical to a robust and generalized video representation. To inject motion dynamics, recent works have adopted frame difference as the source of motion information in video contrastive learning, considering the trade-off between quality and cost. However, existing works align motion features at the instance level, which suffers from spatial and temporal weak alignment across modalities. In this paper, we present a \textbf{Fi}ne-grained \textbf{M}otion \textbf{A}lignment (FIMA) framework, capable of introducing well-aligned and significant motion information. Specifically, we first develop a dense contrastive learning framework in the spatiotemporal domain to generate pixel-level motion supervision. Then, we design a motion decoder and a foreground sampling strategy to eliminate the weak alignments in terms of time and space. Moreover, a frame-level motion contrastive loss is presented to improve the temporal diversity of the motion features. Extensive experiments demonstrate that the representations learned by FIMA possess great motion-awareness capabilities and achieve state-of-the-art or competitive results on downstream tasks across UCF101, HMDB51, and Diving48 datasets. Code is available at \url{//github.com/ZMHH-H/FIMA}.

Image fusion aims to generate a high-quality image from multiple images captured under varying conditions. The key problem of this task is to preserve complementary information while filtering out irrelevant information for the fused result. However, existing methods address this problem by leveraging static convolutional neural networks (CNNs), suffering two inherent limitations during feature extraction, i.e., being unable to handle spatial-variant contents and lacking guidance from multiple inputs. In this paper, we propose a novel mutual-guided dynamic network (MGDN) for image fusion, which allows for effective information utilization across different locations and inputs. Specifically, we design a mutual-guided dynamic filter (MGDF) for adaptive feature extraction, composed of a mutual-guided cross-attention (MGCA) module and a dynamic filter predictor, where the former incorporates additional guidance from different inputs and the latter generates spatial-variant kernels for different locations. In addition, we introduce a parallel feature fusion (PFF) module to effectively fuse local and global information of the extracted features. To further reduce the redundancy among the extracted features while simultaneously preserving their shared structural information, we devise a novel loss function that combines the minimization of normalized mutual information (NMI) with an estimated gradient mask. Experimental results on five benchmark datasets demonstrate that our proposed method outperforms existing methods on four image fusion tasks. The code and model are publicly available at: //github.com/Guanys-dar/MGDN.

Human-centric perception plays a vital role in vision and graphics. But their data annotations are prohibitively expensive. Therefore, it is desirable to have a versatile pre-train model that serves as a foundation for data-efficient downstream tasks transfer. To this end, we propose the Human-Centric Multi-Modal Contrastive Learning framework HCMoCo that leverages the multi-modal nature of human data (e.g. RGB, depth, 2D keypoints) for effective representation learning. The objective comes with two main challenges: dense pre-train for multi-modality data, efficient usage of sparse human priors. To tackle the challenges, we design the novel Dense Intra-sample Contrastive Learning and Sparse Structure-aware Contrastive Learning targets by hierarchically learning a modal-invariant latent space featured with continuous and ordinal feature distribution and structure-aware semantic consistency. HCMoCo provides pre-train for different modalities by combining heterogeneous datasets, which allows efficient usage of existing task-specific human data. Extensive experiments on four downstream tasks of different modalities demonstrate the effectiveness of HCMoCo, especially under data-efficient settings (7.16% and 12% improvement on DensePose Estimation and Human Parsing). Moreover, we demonstrate the versatility of HCMoCo by exploring cross-modality supervision and missing-modality inference, validating its strong ability in cross-modal association and reasoning.

Many real-world applications require the prediction of long sequence time-series, such as electricity consumption planning. Long sequence time-series forecasting (LSTF) demands a high prediction capacity of the model, which is the ability to capture precise long-range dependency coupling between output and input efficiently. Recent studies have shown the potential of Transformer to increase the prediction capacity. However, there are several severe issues with Transformer that prevent it from being directly applicable to LSTF, such as quadratic time complexity, high memory usage, and inherent limitation of the encoder-decoder architecture. To address these issues, we design an efficient transformer-based model for LSTF, named Informer, with three distinctive characteristics: (i) a $ProbSparse$ Self-attention mechanism, which achieves $O(L \log L)$ in time complexity and memory usage, and has comparable performance on sequences' dependency alignment. (ii) the self-attention distilling highlights dominating attention by halving cascading layer input, and efficiently handles extreme long input sequences. (iii) the generative style decoder, while conceptually simple, predicts the long time-series sequences at one forward operation rather than a step-by-step way, which drastically improves the inference speed of long-sequence predictions. Extensive experiments on four large-scale datasets demonstrate that Informer significantly outperforms existing methods and provides a new solution to the LSTF problem.

Convolutional neural networks (CNNs) have shown dramatic improvements in single image super-resolution (SISR) by using large-scale external samples. Despite their remarkable performance based on the external dataset, they cannot exploit internal information within a specific image. Another problem is that they are applicable only to the specific condition of data that they are supervised. For instance, the low-resolution (LR) image should be a "bicubic" downsampled noise-free image from a high-resolution (HR) one. To address both issues, zero-shot super-resolution (ZSSR) has been proposed for flexible internal learning. However, they require thousands of gradient updates, i.e., long inference time. In this paper, we present Meta-Transfer Learning for Zero-Shot Super-Resolution (MZSR), which leverages ZSSR. Precisely, it is based on finding a generic initial parameter that is suitable for internal learning. Thus, we can exploit both external and internal information, where one single gradient update can yield quite considerable results. (See Figure 1). With our method, the network can quickly adapt to a given image condition. In this respect, our method can be applied to a large spectrum of image conditions within a fast adaptation process.

北京阿比特科技有限公司