As the most essential property in a video, motion information is critical to a robust and generalized video representation. To inject motion dynamics, recent works have adopted frame difference as the source of motion information in video contrastive learning, considering the trade-off between quality and cost. However, existing works align motion features at the instance level, which suffers from spatial and temporal weak alignment across modalities. In this paper, we present a \textbf{Fi}ne-grained \textbf{M}otion \textbf{A}lignment (FIMA) framework, capable of introducing well-aligned and significant motion information. Specifically, we first develop a dense contrastive learning framework in the spatiotemporal domain to generate pixel-level motion supervision. Then, we design a motion decoder and a foreground sampling strategy to eliminate the weak alignments in terms of time and space. Moreover, a frame-level motion contrastive loss is presented to improve the temporal diversity of the motion features. Extensive experiments demonstrate that the representations learned by FIMA possess great motion-awareness capabilities and achieve state-of-the-art or competitive results on downstream tasks across UCF101, HMDB51, and Diving48 datasets. Code is available at \url{//github.com/ZMHH-H/FIMA}.
Despite remarkable research advances in diffusion-based video editing, existing methods are limited to short-length videos due to the contradiction between long-range consistency and frame-wise editing. Recent approaches attempt to tackle this challenge by introducing video-2D representations to degrade video editing to image editing. However, they encounter significant difficulties in handling large-scale motion- and view-change videos especially for human-centric videos. This motivates us to introduce the dynamic Neural Radiance Fields (NeRF) as the human-centric video representation to ease the video editing problem to a 3D space editing task. As such, editing can be performed in the 3D spaces and propagated to the entire video via the deformation field. To provide finer and direct controllable editing, we propose the image-based 3D space editing pipeline with a set of effective designs. These include multi-view multi-pose Score Distillation Sampling (SDS) from both 2D personalized diffusion priors and 3D diffusion priors, reconstruction losses on the reference image, text-guided local parts super-resolution, and style transfer for 3D background space. Extensive experiments demonstrate that our method, dubbed as DynVideo-E, significantly outperforms SOTA approaches on two challenging datasets by a large margin of 50% ~ 95% in terms of human preference. Compelling video comparisons are provided in the project page //showlab.github.io/DynVideo-E/. Our code and data will be released to the community.
Bipartite graphs model relationships between two different sets of entities, like actor-movie, user-item, and author-paper. The butterfly, a 4-vertices 4-edges $2\times 2$ bi-clique, is the simplest cohesive motif in a bipartite graph and is the fundamental component of higher-order substructures. Counting and enumerating the butterflies offer significant benefits across various applications, including fraud detection, graph embedding, and community search. While the corresponding motif, the triangle, in the unipartite graphs has been widely studied in both static and temporal settings, the extension of butterfly to temporal bipartite graphs remains unexplored. In this paper, we investigate the temporal butterfly counting and enumeration problem: count and enumerate the butterflies whose edges establish following a certain order within a given duration. Towards efficient computation, we devise a non-trivial baseline rooted in the state-of-the-art butterfly counting algorithm on static graphs, further, explore the intrinsic property of the temporal butterfly, and develop a new optimization framework with a compact data structure and effective priority strategy. The time complexity is proved to be significantly reduced without compromising on space efficiency. In addition, we generalize our algorithms to practical streaming settings and multi-core computing architectures. Our extensive experiments on 11 large-scale real-world datasets demonstrate the efficiency and scalability of our solutions.
Synthesizing inductive loop invariants is fundamental to automating program verification. In this work, we observe that Large Language Models (such as gpt-3.5 or gpt-4) are capable of synthesizing loop invariants for a class of programs in a 0-shot setting, yet require several samples to generate the correct invariants. This can lead to a large number of calls to a program verifier to establish an invariant. To address this issue, we propose a {\it re-ranking} approach for the generated results of LLMs. We have designed a ranker that can distinguish between correct inductive invariants and incorrect attempts based on the problem definition. The ranker is optimized as a contrastive ranker. Experimental results demonstrate that this re-ranking mechanism significantly improves the ranking of correct invariants among the generated candidates, leading to a notable reduction in the number of calls to a verifier.
Ensuring the correctness of critical real-time systems, involving concurrent behaviors and timing requirements, is crucial. Timed automata extend finite-state automata with clocks, compared in guards and invariants with integer constants. Parametric timed automata (PTAs) extend timed automata with timing parameters. Parameter synthesis aims at computing dense sets of valuations for the timing parameters, guaranteeing a good behavior. However, in most cases, the emptiness problem for reachability (i.e., whether the emptiness of the parameter valuations set for which some location is reachable) is undecidable for PTAs and, as a consequence, synthesis procedures do not terminate in general, even for bounded parameters. In this paper, we introduce a parametric extrapolation, that allows us to derive an underapproximation in the form of linear constraints containing not only all the integer points ensuring reachability, but also all the (non-necessarily integer) convex combinations of these integer points, for general PTAs with a bounded parameter domain. We also propose two further algorithms synthesizing parameter valuations guaranteeing unavoidability, and preservation of the untimed behavior w.r.t. a reference parameter valuation, respectively. Our algorithms terminate and can output constraints arbitrarily close to the complete result. We demonstrate their applicability and efficiency using the tool Rom\'eo on two classical benchmarks.
Salient object detection (SOD) in panoramic video is still in the initial exploration stage. The indirect application of 2D video SOD method to the detection of salient objects in panoramic video has many unmet challenges, such as low detection accuracy, high model complexity, and poor generalization performance. To overcome these hurdles, we design an Inter-Layer Attention (ILA) module, an Inter-Layer weight (ILW) module, and a Bi-Modal Attention (BMA) module. Based on these modules, we propose a Spatial-Temporal Dual-Mode Mixed Flow Network (STDMMF-Net) that exploits the spatial flow of panoramic video and the corresponding optical flow for SOD. First, the ILA module calculates the attention between adjacent level features of consecutive frames of panoramic video to improve the accuracy of extracting salient object features from the spatial flow. Then, the ILW module quantifies the salient object information contained in the features of each level to improve the fusion efficiency of the features of each level in the mixed flow. Finally, the BMA module improves the detection accuracy of STDMMF-Net. A large number of subjective and objective experimental results testify that the proposed method demonstrates better detection accuracy than the state-of-the-art (SOTA) methods. Moreover, the comprehensive performance of the proposed method is better in terms of memory required for model inference, testing time, complexity, and generalization performance.
With the explosive growth of information technology, multi-view graph data have become increasingly prevalent and valuable. Most existing multi-view clustering techniques either focus on the scenario of multiple graphs or multi-view attributes. In this paper, we propose a generic framework to cluster multi-view attributed graph data. Specifically, inspired by the success of contrastive learning, we propose multi-view contrastive graph clustering (MCGC) method to learn a consensus graph since the original graph could be noisy or incomplete and is not directly applicable. Our method composes of two key steps: we first filter out the undesirable high-frequency noise while preserving the graph geometric features via graph filtering and obtain a smooth representation of nodes; we then learn a consensus graph regularized by graph contrastive loss. Results on several benchmark datasets show the superiority of our method with respect to state-of-the-art approaches. In particular, our simple approach outperforms existing deep learning-based methods.
We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast
We present a new method to learn video representations from large-scale unlabeled video data. Ideally, this representation will be generic and transferable, directly usable for new tasks such as action recognition and zero or few-shot learning. We formulate unsupervised representation learning as a multi-modal, multi-task learning problem, where the representations are shared across different modalities via distillation. Further, we introduce the concept of loss function evolution by using an evolutionary search algorithm to automatically find optimal combination of loss functions capturing many (self-supervised) tasks and modalities. Thirdly, we propose an unsupervised representation evaluation metric using distribution matching to a large unlabeled dataset as a prior constraint, based on Zipf's law. This unsupervised constraint, which is not guided by any labeling, produces similar results to weakly-supervised, task-specific ones. The proposed unsupervised representation learning results in a single RGB network and outperforms previous methods. Notably, it is also more effective than several label-based methods (e.g., ImageNet), with the exception of large, fully labeled video datasets.
Aspect level sentiment classification aims to identify the sentiment expressed towards an aspect given a context sentence. Previous neural network based methods largely ignore the syntax structure in one sentence. In this paper, we propose a novel target-dependent graph attention network (TD-GAT) for aspect level sentiment classification, which explicitly utilizes the dependency relationship among words. Using the dependency graph, it propagates sentiment features directly from the syntactic context of an aspect target. In our experiments, we show our method outperforms multiple baselines with GloVe embeddings. We also demonstrate that using BERT representations further substantially boosts the performance.
Dense video captioning aims to generate text descriptions for all events in an untrimmed video. This involves both detecting and describing events. Therefore, all previous methods on dense video captioning tackle this problem by building two models, i.e. an event proposal and a captioning model, for these two sub-problems. The models are either trained separately or in alternation. This prevents direct influence of the language description to the event proposal, which is important for generating accurate descriptions. To address this problem, we propose an end-to-end transformer model for dense video captioning. The encoder encodes the video into appropriate representations. The proposal decoder decodes from the encoding with different anchors to form video event proposals. The captioning decoder employs a masking network to restrict its attention to the proposal event over the encoding feature. This masking network converts the event proposal to a differentiable mask, which ensures the consistency between the proposal and captioning during training. In addition, our model employs a self-attention mechanism, which enables the use of efficient non-recurrent structure during encoding and leads to performance improvements. We demonstrate the effectiveness of this end-to-end model on ActivityNet Captions and YouCookII datasets, where we achieved 10.12 and 6.58 METEOR score, respectively.