亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce an algorithm for computing geodesics on sampled manifolds that relies on simulation of quantum dynamics on a graph embedding of the sampled data. Our approach exploits classic results in semiclassical analysis and the quantum-classical correspondence, and forms a basis for techniques to learn the manifold from which a dataset is sampled, and subsequently for nonlinear dimensionality reduction of high-dimensional datasets. We illustrate the new algorithm with data sampled from model manifolds and also by a clustering demonstration based on COVID-19 mobility data. Finally, our method reveals interesting connections between the discretization provided by data sampling and quantization.

相關內容

Quantum communications is a promising technology that will play a fundamental role in the design of future networks. In fact, significant efforts are being dedicated by both the quantum physics and the classical communications communities on developing new architectures, solutions, and practical implementations of quantum communication networks (QCNs). Although these efforts led to various advances in today's technologies, there still exists a non-trivial gap between the research efforts of the two communities on designing and optimizing the QCN performance. For instance, most prior works by the classical communications community ignore important quantum physics-based constraints when designing QCNs. For example, many works on entanglement distribution do not account for the decoherence of qubits inside quantum memories and, thus, their designs become impractical since they assume an infinite quantum states' lifetime. In this paper, we introduce a novel framework, dubbed physics-informed QCNs, for designing and analyzing the performance of QCNs, by relying on the quantum physics principles that underly the different QCN components. The need of the proposed approach is then assessed and its fundamental role in designing practical QCNs is analyzed across various open research areas. Moreover, we identify novel physics-informed performance metrics and controls that enable QCNs to leverage the state-of-the-art advancements in quantum technologies to enhance their performance. Finally, we analyze multiple pressing challenges and open research directions in QCNs that must be treated using a physics-informed approach to lead practically viable results. Ultimately, this work attempts to bridge the gap between the classical communications and the quantum physics communities in the area of QCNs to foster the development of future communication networks (6G and beyond, and the quantum Internet).

This paper presents a control framework on Lie groups by designing the control objective in its Lie algebra. Control on Lie groups is challenging due to its nonlinear nature and difficulties in system parameterization. Existing methods to design the control objective on a Lie group and then derive the gradient for controller design are non-trivial and can result in slow convergence in tracking control. We show that with a proper left-invariant metric, setting the gradient of the cost function as the tracking error in the Lie algebra leads to a quadratic Lyapunov function that enables globally exponential convergence. In the PD control case, we show that our controller can maintain an exponential convergence rate even when the initial error is approaching $\pi$ in SO(3). We also show the merit of this proposed framework in trajectory optimization. The proposed cost function enables the iterative Linear Quadratic Regulator (iLQR) to converge much faster than the Differential Dynamic Programming (DDP) with a well-adopted cost function when the initial trajectory is poorly initialized on SO(3).

Stochastic partial differential equations (SPDEs) are the mathematical tool of choice for modelling spatiotemporal PDE-dynamics under the influence of randomness. Based on the notion of mild solution of an SPDE, we introduce a novel neural architecture to learn solution operators of PDEs with (possibly stochastic) forcing from partially observed data. The proposed Neural SPDE model provides an extension to two popular classes of physics-inspired architectures. On the one hand, it extends Neural CDEs and variants -- continuous-time analogues of RNNs -- in that it is capable of processing incoming sequential information arriving irregularly in time and observed at arbitrary spatial resolutions. On the other hand, it extends Neural Operators -- generalizations of neural networks to model mappings between spaces of functions -- in that it can parameterize solution operators of SPDEs depending simultaneously on the initial condition and a realization of the driving noise. By performing operations in the spectral domain, we show how a Neural SPDE can be evaluated in two ways, either by calling an ODE solver (emulating a spectral Galerkin scheme), or by solving a fixed point problem. Experiments on various semilinear SPDEs, including the stochastic Navier-Stokes equations, demonstrate how the Neural SPDE model is capable of learning complex spatiotemporal dynamics in a resolution-invariant way, with better accuracy and lighter training data requirements compared to alternative models, and up to 3 orders of magnitude faster than traditional solvers.

Molecular dynamics (MD) has long been the \emph{de facto} choice for modeling complex atomistic systems from first principles, and recently deep learning become a popular way to accelerate it. Notwithstanding, preceding approaches depend on intermediate variables such as the potential energy or force fields to update atomic positions, which requires additional computations to perform back-propagation. To waive this requirement, we propose a novel model called ScoreMD by directly estimating the gradient of the log density of molecular conformations. Moreover, we analyze that diffusion processes highly accord with the principle of enhanced sampling in MD simulations, and is therefore a perfect match to our sequential conformation generation task. That is, ScoreMD perturbs the molecular structure with a conditional noise depending on atomic accelerations and employs conformations at previous timeframes as the prior distribution for sampling. Another challenge of modeling such a conformation generation process is that the molecule is kinetic instead of static, which no prior studies strictly consider. To solve this challenge, we introduce a equivariant geometric Transformer as a score function in the diffusion process to calculate the corresponding gradient. It incorporates the directions and velocities of atomic motions via 3D spherical Fourier-Bessel representations. With multiple architectural improvements, we outperforms state-of-the-art baselines on MD17 and isomers of C7O2H10. This research provides new insights into the acceleration of new material and drug discovery.

In this work, we study the transfer learning problem under high-dimensional generalized linear models (GLMs), which aim to improve the fit on target data by borrowing information from useful source data. Given which sources to transfer, we propose a transfer learning algorithm on GLM, and derive its $\ell_1/\ell_2$-estimation error bounds as well as a bound for a prediction error measure. The theoretical analysis shows that when the target and source are sufficiently close to each other, these bounds could be improved over those of the classical penalized estimator using only target data under mild conditions. When we don't know which sources to transfer, an algorithm-free transferable source detection approach is introduced to detect informative sources. The detection consistency is proved under the high-dimensional GLM transfer learning setting. We also propose an algorithm to construct confidence intervals of each coefficient component, and the corresponding theories are provided. Extensive simulations and a real-data experiment verify the effectiveness of our algorithms. We implement the proposed GLM transfer learning algorithms in a new R package glmtrans, which is available on CRAN.

We introduce Universal Solution Manifold Network (USM-Net), a novel surrogate model, based on Artificial Neural Networks (ANNs), which applies to differential problems whose solution depends on physical and geometrical parameters. Our method employs a mesh-less architecture, thus overcoming the limitations associated with image segmentation and mesh generation required by traditional discretization methods. Indeed, we encode geometrical variability through scalar landmarks, such as coordinates of points of interest. In biomedical applications, these landmarks can be inexpensively processed from clinical images. Our approach is non-intrusive and modular, as we select a data-driven loss function. The latter can also be modified by considering additional constraints, thus leveraging available physical knowledge. Our approach can also accommodate a universal coordinate system, which supports the USM-Net in learning the correspondence between points belonging to different geometries, boosting prediction accuracy on unobserved geometries. Finally, we present two numerical test cases in computational fluid dynamics involving variable Reynolds numbers as well as computational domains of variable shape. The results show that our method allows for inexpensive but accurate approximations of velocity and pressure, avoiding computationally expensive image segmentation, mesh generation, or re-training for every new instance of physical parameters and shape of the domain.

Recent decades, the emergence of numerous novel algorithms makes it a gimmick to propose an intelligent optimization system based on metaphor, and hinders researchers from exploring the essence of search behavior in algorithms. However, it is difficult to directly discuss the search behavior of an intelligent optimization algorithm, since there are so many kinds of intelligent schemes. To address this problem, an intelligent optimization system is regarded as a simulated physical optimization system in this paper. The dynamic search behavior of such a simplified physical optimization system are investigated with quantum theory. To achieve this goal, the Schroedinger equation is employed as the dynamics equation of the optimization algorithm, which is used to describe dynamic search behaviours in the evolution process with quantum theory. Moreover, to explore the basic behaviour of the optimization system, the optimization problem is assumed to be decomposed and approximated. Correspondingly, the basic search behaviour is derived, which constitutes the basic iterative process of a simple optimization system. The basic iterative process is compared with some classical bare-bones schemes to verify the similarity of search behavior under different metaphors. The search strategies of these bare bones algorithms are analyzed through experiments.

This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

In this paper, we propose a deep reinforcement learning framework called GCOMB to learn algorithms that can solve combinatorial problems over large graphs. GCOMB mimics the greedy algorithm in the original problem and incrementally constructs a solution. The proposed framework utilizes Graph Convolutional Network (GCN) to generate node embeddings that predicts the potential nodes in the solution set from the entire node set. These embeddings enable an efficient training process to learn the greedy policy via Q-learning. Through extensive evaluation on several real and synthetic datasets containing up to a million nodes, we establish that GCOMB is up to 41% better than the state of the art, up to seven times faster than the greedy algorithm, robust and scalable to large dynamic networks.

北京阿比特科技有限公司