亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The success of deep learning models depends on the size and quality of the dataset to solve certain tasks. Here, we explore how far generated data can aid real data in improving the performance of Neural Networks. In this work, we consider facial expression recognition since it requires challenging local data generation at the level of local regions such as mouth, eyebrows, etc, rather than simple augmentation. Generative Adversarial Networks (GANs) provide an alternative method for generating such local deformations but they need further validation. To answer our question, we consider noncomplex Convolutional Neural Networks (CNNs) based classifiers for recognizing Ekman emotions. For the data generation process, we consider generating facial expressions (FEs) by relying on two GANs. The first generates a random identity while the second imposes facial deformations on top of it. We consider training the CNN classifier using FEs from: real-faces, GANs-generated, and finally using a combination of real and GAN-generated faces. We determine an upper bound regarding the data generation quantity to be mixed with the real one which contributes the most to enhancing FER accuracy. In our experiments, we find out that 5-times more synthetic data to the real FEs dataset increases accuracy by 16%.

相關內容

Generative models based on neural networks present a substantial challenge within deep learning. As it stands, such models are primarily limited to the domain of artificial neural networks. Spiking neural networks, as the third generation of neural networks, offer a closer approximation to brain-like processing due to their rich spatiotemporal dynamics. However, generative models based on spiking neural networks are not well studied. In this work, we pioneer constructing a spiking generative adversarial network capable of handling complex images. Our first task was to identify the problems of out-of-domain inconsistency and temporal inconsistency inherent in spiking generative adversarial networks. We addressed these issues by incorporating the Earth-Mover distance and an attention-based weighted decoding method, significantly enhancing the performance of our algorithm across several datasets. Experimental results reveal that our approach outperforms existing methods on the MNIST, FashionMNIST, CIFAR10, and CelebA datasets. Moreover, compared with hybrid spiking generative adversarial networks, where the discriminator is an artificial analog neural network, our methodology demonstrates closer alignment with the information processing patterns observed in the mouse.

With well-selected data, homogeneous diffusion inpainting can reconstruct images from sparse data with high quality. While 4K colour images of size 3840 x 2160 can already be inpainted in real time, optimising the known data for applications like image compression remains challenging: Widely used stochastic strategies can take days for a single 4K image. Recently, a first neural approach for this so-called mask optimisation problem offered high speed and good quality for small images. It trains a mask generation network with the help of a neural inpainting surrogate. However, these mask networks can only output masks for the resolution and mask density they were trained for. We solve these problems and enable mask optimisation for high-resolution images through a neuroexplicit coarse-to-fine strategy. Additionally, we improve the training and interpretability of mask networks by including a numerical inpainting solver directly into the network. This allows to generate masks for 4K images in around 0.6 seconds while exceeding the quality of stochastic methods on practically relevant densities. Compared to popular existing approaches, this is an acceleration of up to four orders of magnitude.

In this paper, we investigate the Gaussian graphical model inference problem in a novel setting that we call erose measurements, referring to irregularly measured or observed data. For graphs, this results in different node pairs having vastly different sample sizes which frequently arises in data integration, genomics, neuroscience, and sensor networks. Existing works characterize the graph selection performance using the minimum pairwise sample size, which provides little insights for erosely measured data, and no existing inference method is applicable. We aim to fill in this gap by proposing the first inference method that characterizes the different uncertainty levels over the graph caused by the erose measurements, named GI-JOE (Graph Inference when Joint Observations are Erose). Specifically, we develop an edge-wise inference method and an affiliated FDR control procedure, where the variance of each edge depends on the sample sizes associated with corresponding neighbors. We prove statistical validity under erose measurements, thanks to careful localized edge-wise analysis and disentangling the dependencies across the graph. Finally, through simulation studies and a real neuroscience data example, we demonstrate the advantages of our inference methods for graph selection from erosely measured data.

With deep learning deployed in many security-sensitive areas, machine learning security is becoming progressively important. Recent studies demonstrate attackers can exploit system-level techniques exploiting the RowHammer vulnerability of DRAM to deterministically and precisely flip bits in Deep Neural Networks (DNN) model weights to affect inference accuracy. The existing defense mechanisms are software-based, such as weight reconstruction requiring expensive training overhead or performance degradation. On the other hand, generic hardware-based victim-/aggressor-focused mechanisms impose expensive hardware overheads and preserve the spatial connection between victim and aggressor rows. In this paper, we present the first DRAM-based victim-focused defense mechanism tailored for quantized DNNs, named DNN-Defender that leverages the potential of in-DRAM swapping to withstand the targeted bit-flip attacks. Our results indicate that DNN-Defender can deliver a high level of protection downgrading the performance of targeted RowHammer attacks to a random attack level. In addition, the proposed defense has no accuracy drop on CIFAR-10 and ImageNet datasets without requiring any software training or incurring additional hardware overhead.

Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.

Generative models are now capable of producing highly realistic images that look nearly indistinguishable from the data on which they are trained. This raises the question: if we have good enough generative models, do we still need datasets? We investigate this question in the setting of learning general-purpose visual representations from a black-box generative model rather than directly from data. Given an off-the-shelf image generator without any access to its training data, we train representations from the samples output by this generator. We compare several representation learning methods that can be applied to this setting, using the latent space of the generator to generate multiple "views" of the same semantic content. We show that for contrastive methods, this multiview data can naturally be used to identify positive pairs (nearby in latent space) and negative pairs (far apart in latent space). We find that the resulting representations rival those learned directly from real data, but that good performance requires care in the sampling strategy applied and the training method. Generative models can be viewed as a compressed and organized copy of a dataset, and we envision a future where more and more "model zoos" proliferate while datasets become increasingly unwieldy, missing, or private. This paper suggests several techniques for dealing with visual representation learning in such a future. Code is released on our project page: //ali-design.github.io/GenRep/

Generative adversarial networks (GANs) have been extensively studied in the past few years. Arguably their most significant impact has been in the area of computer vision where great advances have been made in challenges such as plausible image generation, image-to-image translation, facial attribute manipulation and similar domains. Despite the significant successes achieved to date, applying GANs to real-world problems still poses significant challenges, three of which we focus on here. These are: (1) the generation of high quality images, (2) diversity of image generation, and (3) stable training. Focusing on the degree to which popular GAN technologies have made progress against these challenges, we provide a detailed review of the state of the art in GAN-related research in the published scientific literature. We further structure this review through a convenient taxonomy we have adopted based on variations in GAN architectures and loss functions. While several reviews for GANs have been presented to date, none have considered the status of this field based on their progress towards addressing practical challenges relevant to computer vision. Accordingly, we review and critically discuss the most popular architecture-variant, and loss-variant GANs, for tackling these challenges. Our objective is to provide an overview as well as a critical analysis of the status of GAN research in terms of relevant progress towards important computer vision application requirements. As we do this we also discuss the most compelling applications in computer vision in which GANs have demonstrated considerable success along with some suggestions for future research directions. Code related to GAN-variants studied in this work is summarized on //github.com/sheqi/GAN_Review.

Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.

Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models.

Deep learning methods for graphs achieve remarkable performance on many node-level and graph-level prediction tasks. However, despite the proliferation of the methods and their success, prevailing Graph Neural Networks (GNNs) neglect subgraphs, rendering subgraph prediction tasks challenging to tackle in many impactful applications. Further, subgraph prediction tasks present several unique challenges, because subgraphs can have non-trivial internal topology, but also carry a notion of position and external connectivity information relative to the underlying graph in which they exist. Here, we introduce SUB-GNN, a subgraph neural network to learn disentangled subgraph representations. In particular, we propose a novel subgraph routing mechanism that propagates neural messages between the subgraph's components and randomly sampled anchor patches from the underlying graph, yielding highly accurate subgraph representations. SUB-GNN specifies three channels, each designed to capture a distinct aspect of subgraph structure, and we provide empirical evidence that the channels encode their intended properties. We design a series of new synthetic and real-world subgraph datasets. Empirical results for subgraph classification on eight datasets show that SUB-GNN achieves considerable performance gains, outperforming strong baseline methods, including node-level and graph-level GNNs, by 12.4% over the strongest baseline. SUB-GNN performs exceptionally well on challenging biomedical datasets when subgraphs have complex topology and even comprise multiple disconnected components.

北京阿比特科技有限公司