As the popularity of adhesive joints in industry increases, so does the need for tools to support the process of selecting a suitable adhesive. While some such tools already exist, they are either too limited in scope, or offer too little flexibility in use. This work presents a more advanced tool, that was developed together with a team of adhesive experts. We first extract the experts' knowledge about this domain and formalize it in a Knowledge Base (KB). The IDP-Z3 reasoning system can then be used to derive the necessary functionality from this KB. Together with a user-friendly interactive interface, this creates an easy-to-use tool capable of assisting the adhesive experts. To validate our approach, we performed user testing in the form of qualitative interviews. The experts are very positive about the tool, stating that, among others, it will help save time and find more suitable adhesives. Under consideration in Theory and Practice of Logic Programming (TPLP).
Backdoor attack aims to deceive a victim model when facing backdoor instances while maintaining its performance on benign data. Current methods use manual patterns or special perturbations as triggers, while they often overlook the robustness against data corruption, making backdoor attacks easy to defend in practice. To address this issue, we propose a novel backdoor attack method named Spy-Watermark, which remains effective when facing data collapse and backdoor defense. Therein, we introduce a learnable watermark embedded in the latent domain of images, serving as the trigger. Then, we search for a watermark that can withstand collapse during image decoding, cooperating with several anti-collapse operations to further enhance the resilience of our trigger against data corruption. Extensive experiments are conducted on CIFAR10, GTSRB, and ImageNet datasets, demonstrating that Spy-Watermark overtakes ten state-of-the-art methods in terms of robustness and stealthiness.
An important aspect in the development of small molecules as drugs or agro-chemicals is their systemic availability after intravenous and oral administration. The prediction of the systemic availability from the chemical structure of a potential candidate is highly desirable, as it allows to focus the drug or agrochemical development on compounds with a favorable kinetic profile. However, such pre-dictions are challenging as the availability is the result of the complex interplay between molecular properties, biology and physiology and training data is rare. In this work we improve the hybrid model developed earlier [1]. We reduce the median fold change error for the total oral exposure from 2.85 to 2.35 and for intravenous administration from 1.95 to 1.62. This is achieved by training on a larger data set, improving the neural network architecture as well as the parametrization of mechanistic model. Further, we extend our approach to predict additional endpoints and to handle different covariates, like sex and dosage form. In contrast to a pure machine learning model, our model is able to predict new end points on which it has not been trained. We demonstrate this feature by predicting the exposure over the first 24h, while the model has only been trained on the total exposure.
The field of few-shot learning (FSL) has shown promising results in scenarios where training data is limited, but its vulnerability to backdoor attacks remains largely unexplored. We first explore this topic by first evaluating the performance of the existing backdoor attack methods on few-shot learning scenarios. Unlike in standard supervised learning, existing backdoor attack methods failed to perform an effective attack in FSL due to two main issues. Firstly, the model tends to overfit to either benign features or trigger features, causing a tough trade-off between attack success rate and benign accuracy. Secondly, due to the small number of training samples, the dirty label or visible trigger in the support set can be easily detected by victims, which reduces the stealthiness of attacks. It seemed that FSL could survive from backdoor attacks. However, in this paper, we propose the Few-shot Learning Backdoor Attack (FLBA) to show that FSL can still be vulnerable to backdoor attacks. Specifically, we first generate a trigger to maximize the gap between poisoned and benign features. It enables the model to learn both benign and trigger features, which solves the problem of overfitting. To make it more stealthy, we hide the trigger by optimizing two types of imperceptible perturbation, namely attractive and repulsive perturbation, instead of attaching the trigger directly. Once we obtain the perturbations, we can poison all samples in the benign support set into a hidden poisoned support set and fine-tune the model on it. Our method demonstrates a high Attack Success Rate (ASR) in FSL tasks with different few-shot learning paradigms while preserving clean accuracy and maintaining stealthiness. This study reveals that few-shot learning still suffers from backdoor attacks, and its security should be given attention.
In this short paper, we examine the main metrics used to evaluate textual coreference and we detail some of their limitations. We show that a unique score cannot represent the full complexity of the problem at stake, and is thus uninformative, or even misleading. We propose a new way of evaluating coreference, taking into account the context (in our case, the analysis of fictions, esp. novels). More specifically, we propose to distinguish long coreference chains (corresponding to main characters), from short ones (corresponding to secondary characters), and singletons (isolated elements). This way, we hope to get more interpretable and thus more informative results through evaluation.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Creating presentation materials requires complex multimodal reasoning skills to summarize key concepts and arrange them in a logical and visually pleasing manner. Can machines learn to emulate this laborious process? We present a novel task and approach for document-to-slide generation. Solving this involves document summarization, image and text retrieval, slide structure and layout prediction to arrange key elements in a form suitable for presentation. We propose a hierarchical sequence-to-sequence approach to tackle our task in an end-to-end manner. Our approach exploits the inherent structures within documents and slides and incorporates paraphrasing and layout prediction modules to generate slides. To help accelerate research in this domain, we release a dataset about 6K paired documents and slide decks used in our experiments. We show that our approach outperforms strong baselines and produces slides with rich content and aligned imagery.
For deploying a deep learning model into production, it needs to be both accurate and compact to meet the latency and memory constraints. This usually results in a network that is deep (to ensure performance) and yet thin (to improve computational efficiency). In this paper, we propose an efficient method to train a deep thin network with a theoretic guarantee. Our method is motivated by model compression. It consists of three stages. In the first stage, we sufficiently widen the deep thin network and train it until convergence. In the second stage, we use this well-trained deep wide network to warm up (or initialize) the original deep thin network. This is achieved by letting the thin network imitate the immediate outputs of the wide network from layer to layer. In the last stage, we further fine tune this well initialized deep thin network. The theoretical guarantee is established by using mean field analysis, which shows the advantage of layerwise imitation over traditional training deep thin networks from scratch by backpropagation. We also conduct large-scale empirical experiments to validate our approach. By training with our method, ResNet50 can outperform ResNet101, and BERT_BASE can be comparable with BERT_LARGE, where both the latter models are trained via the standard training procedures as in the literature.
Compared with cheap addition operation, multiplication operation is of much higher computation complexity. The widely-used convolutions in deep neural networks are exactly cross-correlation to measure the similarity between input feature and convolution filters, which involves massive multiplications between float values. In this paper, we present adder networks (AdderNets) to trade these massive multiplications in deep neural networks, especially convolutional neural networks (CNNs), for much cheaper additions to reduce computation costs. In AdderNets, we take the $\ell_1$-norm distance between filters and input feature as the output response. The influence of this new similarity measure on the optimization of neural network have been thoroughly analyzed. To achieve a better performance, we develop a special back-propagation approach for AdderNets by investigating the full-precision gradient. We then propose an adaptive learning rate strategy to enhance the training procedure of AdderNets according to the magnitude of each neuron's gradient. As a result, the proposed AdderNets can achieve 74.9% Top-1 accuracy 91.7% Top-5 accuracy using ResNet-50 on the ImageNet dataset without any multiplication in convolution layer.
Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.
Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.