Conventional neural network elastoplasticity models are often perceived as lacking interpretability. This paper introduces a two-step machine-learning approach that returns mathematical models interpretable by human experts. In particular, we introduce a surrogate model where yield surfaces are expressed in terms of a set of single-variable feature mappings obtained from supervised learning. A postprocessing step is then used to re-interpret the set of single-variable neural network mapping functions into mathematical form through symbolic regression. This divide-and-conquer approach provides several important advantages. First, it enables us to overcome the scaling issue of symbolic regression algorithms. From a practical perspective, it enhances the portability of learned models for partial differential equation solvers written in different programming languages. Finally, it enables us to have a concrete understanding of the attributes of the materials, such as convexity and symmetries of models, through automated derivations and reasoning. Numerical examples have been provided, along with an open-source code to enable third-party validation.
Pretrial risk assessment tools are used in jurisdictions across the country to assess the likelihood of "pretrial failure," the event where defendants either fail to appear for court or reoffend. Judicial officers, in turn, use these assessments to determine whether to release or detain defendants during trial. While algorithmic risk assessment tools were designed to predict pretrial failure with greater accuracy relative to judges, there is still concern that both risk assessment recommendations and pretrial decisions are biased against minority groups. In this paper, we develop methods to investigate the association between risk factors and pretrial failure, while simultaneously estimating misclassification rates of pretrial risk assessments and of judicial decisions as a function of defendant race. This approach adds to a growing literature that makes use of outcome misclassification methods to answer questions about fairness in pretrial decision-making. We give a detailed simulation study for our proposed methodology and apply these methods to data from the Virginia Department of Criminal Justice Services. We estimate that the VPRAI algorithm has near-perfect specificity, but its sensitivity differs by defendant race. Judicial decisions also display evidence of bias; we estimate wrongful detention rates of 39.7% and 51.4% among white and Black defendants, respectively.
The investigation of mixture models is a key to understand and visualize the distribution of multivariate data. Most mixture models approaches are based on likelihoods, and are not adapted to distribution with finite support or without a well-defined density function. This study proposes the Augmented Quantization method, which is a reformulation of the classical quantization problem but which uses the p-Wasserstein distance. This metric can be computed in very general distribution spaces, in particular with varying supports. The clustering interpretation of quantization is revisited in a more general framework. The performance of Augmented Quantization is first demonstrated through analytical toy problems. Subsequently, it is applied to a practical case study involving river flooding, wherein mixtures of Dirac and Uniform distributions are built in the input space, enabling the identification of the most influential variables.
Women are at increased risk of bone loss during the menopausal transition; in fact, nearly 50\% of women's lifetime bone loss occurs during this time. The longitudinal relationships between estradiol (E2) and follicle-stimulating hormone (FSH), two hormones that change have characteristic changes during the menopausal transition, and bone health outcomes are complex. However, in addition to level and rate of change in E2 and FSH, variability in these hormones across the menopausal transition may be an important predictor of bone health, but this question has yet to be well explored. We introduce a joint model that characterizes individual mean estradiol (E2) trajectories and the individual residual variances and links these variances to bone health trajectories. In our application, we found that higher FSH variability was associated with declines in bone mineral density (BMD) before menopause, but this association was moderated over time after the menopausal transition. Additionally, higher mean E2, but not E2 variability, was associated with slower decreases in during the menopausal transition. We also include a simulation study that shows that naive two-stage methods often fail to propagate uncertainty in the individual-level variance estimates, resulting in estimation bias and invalid interval coverage
Current physics-informed (standard or operator) neural networks still rely on accurately learning the initial conditions of the system they are solving. In contrast, standard numerical methods evolve such initial conditions without needing to learn these. In this study, we propose to improve current physics-informed deep learning strategies such that initial conditions do not need to be learned and are represented exactly in the predicted solution. Moreover, this method guarantees that when a DeepONet is applied multiple times to time step a solution, the resulting function is continuous.
This work aims to explore the community structure of Santiago de Chile by analyzing the movement patterns of its residents. We use a dataset containing the approximate locations of home and work places for a subset of anonymized residents to construct a network that represents the movement patterns within the city. Through the analysis of this network, we aim to identify the communities or sub-cities that exist within Santiago de Chile and gain insights into the factors that drive the spatial organization of the city. We employ modularity optimization algorithms and clustering techniques to identify the communities within the network. Our results present that the novelty of combining community detection algorithms with segregation tools provides new insights to further the understanding of the complex geography of segregation during working hours.
In this paper, new unfitted mixed finite elements are presented for elliptic interface problems with jump coefficients. Our model is based on a fictitious domain formulation with distributed Lagrange multiplier. The relevance of our investigations is better seen when applied to the framework of fluid structure interaction problems. Two finite elements schemes with piecewise constant Lagrange multiplier are proposed and their stability is proved theoretically. Numerical results compare the performance of those elements, confirming the theoretical proofs and verifying that the schemes converge with optimal rate.
This paper presents a numerical method for the simulation of elastic solid materials coupled to fluid inclusions. The application is motivated by the modeling of vascularized tissues and by problems in medical imaging which target the estimation of effective (i.e., macroscale) material properties, taking into account the influence of microscale dynamics, such as fluid flow in the microvasculature. The method is based on the recently proposed Reduced Lagrange Multipliers framework. In particular, the interface between solid and fluid domains is not resolved within the computational mesh for the elastic material but discretized independently, imposing the coupling condition via non-matching Lagrange multipliers. Exploiting the multiscale properties of the problem, the resulting Lagrange multipliers space is reduced to a lower-dimensional characteristic set. We present the details of the stability analysis of the resulting method considering a non-standard boundary condition that enforces a local deformation on the solid-fluid boundary. The method is validated with several numerical examples.
This study focuses on the use of model and data fusion for improving the Spalart-Allmaras (SA) closure model for Reynolds-averaged Navier-Stokes solutions of separated flows. In particular, our goal is to develop of models that not-only assimilate sparse experimental data to improve performance in computational models, but also generalize to unseen cases by recovering classical SA behavior. We achieve our goals using data assimilation, namely the Ensemble Kalman Filtering approach (EnKF), to calibrate the coefficients of the SA model for separated flows. A holistic calibration strategy is implemented via a parameterization of the production, diffusion, and destruction terms. This calibration relies on the assimilation of experimental data collected velocity profiles, skin friction, and pressure coefficients for separated flows. Despite using of observational data from a single flow condition around a backward-facing step (BFS), the recalibrated SA model demonstrates generalization to other separated flows, including cases such as the 2D-bump and modified BFS. Significant improvement is observed in the quantities of interest, i.e., skin friction coefficient ($C_f$) and pressure coefficient ($C_p$) for each flow tested. Finally, it is also demonstrated that the newly proposed model recovers SA proficiency for external, unseparated flows, such as flow around a NACA-0012 airfoil without any danger of extrapolation, and that the individually calibrated terms in the SA model are targeted towards specific flow-physics wherein the calibrated production term improves the re-circulation zone while destruction improves the recovery zone.
A method for sound field decomposition based on neural networks is proposed. The method comprises two stages: a sound field separation stage and a single-source localization stage. In the first stage, the sound pressure at microphones synthesized by multiple sources is separated into one excited by each sound source. In the second stage, the source location is obtained as a regression from the sound pressure at microphones consisting of a single sound source. The estimated location is not affected by discretization because the second stage is designed as a regression rather than a classification. Datasets are generated by simulation using Green's function, and the neural network is trained for each frequency. Numerical experiments reveal that, compared with conventional methods, the proposed method can achieve higher source-localization accuracy and higher sound-field-reconstruction accuracy.
We present a learning based framework for mesh quality improvement on unstructured triangular and quadrilateral meshes. Our model learns to improve mesh quality according to a prescribed objective function purely via self-play reinforcement learning with no prior heuristics. The actions performed on the mesh are standard local and global element operations. The goal is to minimize the deviation of the node degrees from their ideal values, which in the case of interior vertices leads to a minimization of irregular nodes.