One-bit quantization with time-varying sampling thresholds (also known as random dithering) has recently found significant utilization potential in statistical signal processing applications due to its relatively low power consumption and low implementation cost. In addition to such advantages, an attractive feature of one-bit analog-to-digital converters (ADCs) is their superior sampling rates as compared to their conventional multi-bit counterparts. This characteristic endows one-bit signal processing frameworks with what one may refer to as sample abundance. We show that sample abundance plays a pivotal role in many signal recovery and optimization problems that are formulated as (possibly non-convex) quadratic programs with linear feasibility constraints. Of particular interest to our work are low-rank matrix recovery and compressed sensing applications that take advantage of one-bit quantization. We demonstrate that the sample abundance paradigm allows for the transformation of such problems to merely linear feasibility problems by forming large-scale overdetermined linear systems -- thus removing the need for handling costly optimization constraints and objectives. To make the proposed computational cost savings achievable, we offer enhanced randomized Kaczmarz algorithms to solve these highly overdetermined feasibility problems and provide theoretical guarantees in terms of their convergence, sample size requirements, and overall performance. Several numerical results are presented to illustrate the effectiveness of the proposed methodologies.
Subgraph counting is a fundamental problem in understanding and analyzing graph structured data, yet computationally challenging. This calls for an accurate and efficient algorithm for Subgraph Cardinality Estimation, which is to estimate the number of all isomorphic embeddings of a query graph in a data graph. We present FaSTest, a novel algorithm that combines (1) a powerful filtering technique to significantly reduce the sample space, (2) an adaptive tree sampling algorithm for accurate and efficient estimation, and (3) a worst-case optimal stratified graph sampling algorithm for difficult instances. Extensive experiments on real-world datasets show that FaSTest outperforms state-of-the-art sampling-based methods by up to two orders of magnitude and GNN-based methods by up to three orders of magnitude in terms of accuracy.
We propose the use of a lower or upper triangular sub-base matrix to replace the identity matrix in the source-check-channel-variable linking protomatrix of a double-protograph low-density parity-check joint-source-channel code (DP-LDPC JSCC). The elements along the diagonal of the proposed lower or upper triangular sub-base matrix are assigned as "1" and the other non-zero elements can take any non-negative integral values. Compared with the traditional DP-LDPC JSCC designs, the new designs show a theoretical channel threshold improvement of up to 0.41 dB and a simulated source symbol error rate improvement of up to 0.5 dB at an error rate of 1e-6.
Exemplar-free class-incremental learning (CIL) poses several challenges since it prohibits the rehearsal of data from previous tasks and thus suffers from catastrophic forgetting. Recent approaches to incrementally learning the classifier by freezing the feature extractor after the first task have gained much attention. In this paper, we explore prototypical networks for CIL, which generate new class prototypes using the frozen feature extractor and classify the features based on the Euclidean distance to the prototypes. In an analysis of the feature distributions of classes, we show that classification based on Euclidean metrics is successful for jointly trained features. However, when learning from non-stationary data, we observe that the Euclidean metric is suboptimal and that feature distributions are heterogeneous. To address this challenge, we revisit the anisotropic Mahalanobis distance for CIL. In addition, we empirically show that modeling the feature covariance relations is better than previous attempts at sampling features from normal distributions and training a linear classifier. Unlike existing methods, our approach generalizes to both many- and few-shot CIL settings, as well as to domain-incremental settings. Interestingly, without updating the backbone network, our method obtains state-of-the-art results on several standard continual learning benchmarks. Code is available at //github.com/dipamgoswami/FeCAM.
The problem of revealing botnet activity through Domain Generation Algorithm (DGA) detection seems to be solved, considering that available deep learning classifiers achieve accuracies of over 99.9%. However, these classifiers provide a false sense of security as they are heavily biased and allow for trivial detection bypass. In this work, we leverage explainable artificial intelligence (XAI) methods to analyze the reasoning of deep learning classifiers and to systematically reveal such biases. We show that eliminating these biases from DGA classifiers considerably deteriorates their performance. Nevertheless we are able to design a context-aware detection system that is free of the identified biases and maintains the detection rate of state-of-the art deep learning classifiers. In this context, we propose a visual analysis system that helps to better understand a classifier's reasoning, thereby increasing trust in and transparency of detection methods and facilitating decision-making.
Machine unlearning (MU) is gaining increasing attention due to the need to remove or modify predictions made by machine learning (ML) models. While training models have become more efficient and accurate, the importance of unlearning previously learned information has become increasingly significant in fields such as privacy, security, and fairness. This paper presents a comprehensive survey of MU, covering current state-of-the-art techniques and approaches, including data deletion, perturbation, and model updates. In addition, commonly used metrics and datasets are also presented. The paper also highlights the challenges that need to be addressed, including attack sophistication, standardization, transferability, interpretability, training data, and resource constraints. The contributions of this paper include discussions about the potential benefits of MU and its future directions. Additionally, the paper emphasizes the need for researchers and practitioners to continue exploring and refining unlearning techniques to ensure that ML models can adapt to changing circumstances while maintaining user trust. The importance of unlearning is further highlighted in making Artificial Intelligence (AI) more trustworthy and transparent, especially with the increasing importance of AI in various domains that involve large amounts of personal user data.
We provide the first convergence guarantee for full black-box variational inference (BBVI), also known as Monte Carlo variational inference. While preliminary investigations worked on simplified versions of BBVI (e.g., bounded domain, bounded support, only optimizing for the scale, and such), our setup does not need any such algorithmic modifications. Our results hold for log-smooth posterior densities with and without strong log-concavity and the location-scale variational family. Also, our analysis reveals that certain algorithm design choices commonly employed in practice, particularly, nonlinear parameterizations of the scale of the variational approximation, can result in suboptimal convergence rates. Fortunately, running BBVI with proximal stochastic gradient descent fixes these limitations, and thus achieves the strongest known convergence rate guarantees. We evaluate this theoretical insight by comparing proximal SGD against other standard implementations of BBVI on large-scale Bayesian inference problems.
While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.
Linear combination is a potent data fusion method in information retrieval tasks, thanks to its ability to adjust weights for diverse scenarios. However, achieving optimal weight training has traditionally required manual relevance judgments on a large percentage of documents, a labor-intensive and expensive process. In this study, we investigate the feasibility of obtaining near-optimal weights using a mere 20\%-50\% of relevant documents. Through experiments on four TREC datasets, we find that weights trained with multiple linear regression using this reduced set closely rival those obtained with TREC's official "qrels." Our findings unlock the potential for more efficient and affordable data fusion, empowering researchers and practitioners to reap its full benefits with significantly less effort.
With the exponential surge in diverse multi-modal data, traditional uni-modal retrieval methods struggle to meet the needs of users demanding access to data from various modalities. To address this, cross-modal retrieval has emerged, enabling interaction across modalities, facilitating semantic matching, and leveraging complementarity and consistency between different modal data. Although prior literature undertook a review of the cross-modal retrieval field, it exhibits numerous deficiencies pertaining to timeliness, taxonomy, and comprehensiveness. This paper conducts a comprehensive review of cross-modal retrieval's evolution, spanning from shallow statistical analysis techniques to vision-language pre-training models. Commencing with a comprehensive taxonomy grounded in machine learning paradigms, mechanisms, and models, the paper then delves deeply into the principles and architectures underpinning existing cross-modal retrieval methods. Furthermore, it offers an overview of widely used benchmarks, metrics, and performances. Lastly, the paper probes the prospects and challenges that confront contemporary cross-modal retrieval, while engaging in a discourse on potential directions for further progress in the field. To facilitate the research on cross-modal retrieval, we develop an open-source code repository at //github.com/BMC-SDNU/Cross-Modal-Retrieval.
Graph neural networks (GNNs) have demonstrated a significant boost in prediction performance on graph data. At the same time, the predictions made by these models are often hard to interpret. In that regard, many efforts have been made to explain the prediction mechanisms of these models from perspectives such as GNNExplainer, XGNN and PGExplainer. Although such works present systematic frameworks to interpret GNNs, a holistic review for explainable GNNs is unavailable. In this survey, we present a comprehensive review of explainability techniques developed for GNNs. We focus on explainable graph neural networks and categorize them based on the use of explainable methods. We further provide the common performance metrics for GNNs explanations and point out several future research directions.