亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As spiking-based deep learning inference applications are increasing in embedded systems, these systems tend to integrate neuromorphic accelerators such as $\mu$Brain to improve energy efficiency. We propose a $\mu$Brain-based scalable many-core neuromorphic hardware design to accelerate the computations of spiking deep convolutional neural networks (SDCNNs). To increase energy efficiency, cores are designed to be heterogeneous in terms of their neuron and synapse capacity (big cores have higher capacity than the little ones), and they are interconnected using a parallel segmented bus interconnect, which leads to lower latency and energy compared to a traditional mesh-based Network-on-Chip (NoC). We propose a system software framework called SentryOS to map SDCNN inference applications to the proposed design. SentryOS consists of a compiler and a run-time manager. The compiler compiles an SDCNN application into subnetworks by exploiting the internal architecture of big and little $\mu$Brain cores. The run-time manager schedules these sub-networks onto cores and pipeline their execution to improve throughput. We evaluate the proposed big little many-core neuromorphic design and the system software framework with five commonlyused SDCNN inference applications and show that the proposed solution reduces energy (between 37% and 98%), reduces latency (between 9% and 25%), and increases application throughput (between 20% and 36%). We also show that SentryOS can be easily extended for other spiking neuromorphic accelerators.

相關內容

Since the beginning of information processing by electronic components, the nervous system has served as a metaphor for the organization of computational primitives. Brain-inspired computing today encompasses a class of approaches ranging from using novel nano-devices for computation to research into large-scale neuromorphic architectures, such as TrueNorth, SpiNNaker, BrainScaleS, Tianjic, and Loihi. While implementation details differ, spiking neural networks -- sometimes referred to as the third generation of neural networks -- are the common abstraction used to model computation with such systems. Here we describe the second generation of the BrainScaleS neuromorphic architecture, emphasizing applications enabled by this architecture. It combines a custom analog accelerator core supporting the accelerated physical emulation of bio-inspired spiking neural network primitives with a tightly coupled digital processor and a digital event-routing network.

Objective. Insecure Direct Object Reference (IDOR) or Broken Object Level Authorization (BOLA) are one of the critical type of access control vulnerabilities for modern applications. As a result, an attacker can bypass authorization checks leading to information leakage, account takeover. Our main research goal was to help an application security architect to optimize security design and testing process by giving an algorithm and tool that allows to automatically analyze system API specifications and generate list of possible vulnerabilities and attack vector ready to be used as security non-functional requirements. Method. We conducted a multivocal review of research and conference papers, bug bounty program reports and other grey sources of literature to outline patterns of attacks against IDOR vulnerability. These attacks are collected in groups proceeding with further analysis common attributes between these groups and what features compose the group. Endpoint properties and attack techniques comprise a group of attacks. Mapping between group features and existing OpenAPI specifications is performed to implement a tool for automatic discovery of potentially vulnerable endpoints. Results and practical relevance. In this work, we provide systematization of IDOR/BOLA attack techniques based on literature review, real cases analysis and derive IDOR/BOLA attack groups. We proposed an approach to describe IDOR/BOLA attacks based on OpenAPI specifications properties. We develop an algorithm of potential IDOR/BOLA vulnerabilities detection based on OpenAPI specification processing. We implemented our novel algorithm using Python and evaluated it. The results show that algorithm is resilient and can be used in practice to detect potential IDOR/BOLA vulnerabilities.

Training deep learning (DL) models that do not fit into the memory of a single GPU is a vexed process, forcing users to procure multiple GPUs to adopt model-parallel execution. Unfortunately, sequential dependencies in neural architectures often block efficient multi-device training, leading to suboptimal performance. We present 'model spilling', a technique aimed at models such as Transformers and CNNs to move groups of layers, or shards, between DRAM and GPU memory, thus enabling arbitrarily large models to be trained even on just one GPU. We then present a set of novel techniques leveraging spilling to raise efficiency for multi-model training workloads such as model selection: a new hybrid of task- and model-parallelism, a new shard scheduling heuristic, and 'double buffering' to hide latency. We prototype our ideas into a system we call HYDRA to support seamless single-model and multi-model training of large DL models. Experiments with real benchmark workloads show that HYDRA is over 7x faster than regular model parallelism and over 50% faster than state-of-the-art industrial tools for pipeline parallelism.

There are significant benefits to serve deep learning models from relational databases. First, features extracted from databases do not need to be transferred to any decoupled deep learning systems for inferences, and thus the system management overhead can be significantly reduced. Second, in a relational database, data management along the storage hierarchy is fully integrated with query processing, and thus it can continue model serving even if the working set size exceeds the available memory. Applying model deduplication can greatly reduce the storage space, memory footprint, cache misses, and inference latency. However, existing data deduplication techniques are not applicable to the deep learning model serving applications in relational databases. They do not consider the impacts on model inference accuracy as well as the inconsistency between tensor blocks and database pages. This work proposed synergistic storage optimization techniques for duplication detection, page packing, and caching, to enhance database systems for model serving. We implemented the proposed approach in netsDB, an object-oriented relational database. Evaluation results show that our proposed techniques significantly improved the storage efficiency and the model inference latency, and serving models from relational databases outperformed existing deep learning frameworks when the working set size exceeds available memory.

Computation offloading is indispensable for mobile edge computing (MEC). It uses edge resources to enable intensive computations and save energy for resource-constrained devices. Existing works generally impose strong assumptions on radio channels and network queue sizes. However, practical MEC systems are subject to various uncertainties rendering these assumptions impractical. In this paper, we investigate the energy-efficient computation offloading problem by relaxing those common assumptions and considering intrinsic uncertainties in the network. Specifically, we minimize the worst-case expected energy consumption of a local device when executing a time-critical application modeled as a directed acyclic graph. We employ the extreme value theory to bound the occurrence probability of uncertain events. To solve the formulated problem, we develop an $\epsilon$-bounded approximation algorithm based on column generation. The proposed algorithm can efficiently identify a feasible solution that is less than (1+$\epsilon$) of the optimal one. We implement the proposed scheme on an Android smartphone and conduct extensive experiments using a real-world application. Experiment results corroborate that it will lead to lower energy consumption for the client device by considering the intrinsic uncertainties during computation offloading. The proposed computation offloading scheme also significantly outperforms other schemes in terms of energy saving.

Training deep neural networks (DNNs) for meaningful differential privacy (DP) guarantees severely degrades model utility. In this paper, we demonstrate that the architecture of DNNs has a significant impact on model utility in the context of private deep learning, whereas its effect is largely unexplored in previous studies. In light of this missing, we propose the very first framework that employs neural architecture search to automatic model design for private deep learning, dubbed as DPNAS. To integrate private learning with architecture search, we delicately design a novel search space and propose a DP-aware method for training candidate models. We empirically certify the effectiveness of the proposed framework. The searched model DPNASNet achieves state-of-the-art privacy/utility trade-offs, e.g., for the privacy budget of $(\epsilon, \delta)=(3, 1\times10^{-5})$, our model obtains test accuracy of $98.57\%$ on MNIST, $88.09\%$ on FashionMNIST, and $68.33\%$ on CIFAR-10. Furthermore, by studying the generated architectures, we provide several intriguing findings of designing private-learning-friendly DNNs, which can shed new light on model design for deep learning with differential privacy.

Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.

Deep Learning is applied to energy markets to predict extreme loads observed in energy grids. Forecasting energy loads and prices is challenging due to sharp peaks and troughs that arise due to supply and demand fluctuations from intraday system constraints. We propose deep spatio-temporal models and extreme value theory (EVT) to capture theses effects and in particular the tail behavior of load spikes. Deep LSTM architectures with ReLU and $\tanh$ activation functions can model trends and temporal dependencies while EVT captures highly volatile load spikes above a pre-specified threshold. To illustrate our methodology, we use hourly price and demand data from 4719 nodes of the PJM interconnection, and we construct a deep predictor. We show that DL-EVT outperforms traditional Fourier time series methods, both in-and out-of-sample, by capturing the observed nonlinearities in prices. Finally, we conclude with directions for future research.

Lane mark detection is an important element in the road scene analysis for Advanced Driver Assistant System (ADAS). Limited by the onboard computing power, it is still a challenge to reduce system complexity and maintain high accuracy at the same time. In this paper, we propose a Lane Marking Detector (LMD) using a deep convolutional neural network to extract robust lane marking features. To improve its performance with a target of lower complexity, the dilated convolution is adopted. A shallower and thinner structure is designed to decrease the computational cost. Moreover, we also design post-processing algorithms to construct 3rd-order polynomial models to fit into the curved lanes. Our system shows promising results on the captured road scenes.

Probabilistic topic models are popular unsupervised learning methods, including probabilistic latent semantic indexing (pLSI) and latent Dirichlet allocation (LDA). By now, their training is implemented on general purpose computers (GPCs), which are flexible in programming but energy-consuming. Towards low-energy implementations, this paper investigates their training on an emerging hardware technology called the neuromorphic multi-chip systems (NMSs). NMSs are very effective for a family of algorithms called spiking neural networks (SNNs). We present three SNNs to train topic models. The first SNN is a batch algorithm combining the conventional collapsed Gibbs sampling (CGS) algorithm and an inference SNN to train LDA. The other two SNNs are online algorithms targeting at both energy- and storage-limited environments. The two online algorithms are equivalent with training LDA by using maximum-a-posterior estimation and maximizing the semi-collapsed likelihood, respectively. They use novel, tailored ordinary differential equations for stochastic optimization. We simulate the new algorithms and show that they are comparable with the GPC algorithms, while being suitable for NMS implementation. We also propose an extension to train pLSI and a method to prune the network to obey the limited fan-in of some NMSs.

北京阿比特科技有限公司