Bluetooth Low Energy (BLE) has become the primary transmission media due to its extremely low energy consumption, good network scope, and data transfer speed for the Internet of Things (IoT) and smart wearable devices. With the exponential boom of the Internet of Things (IoT) and the Bluetooth Low Energy (BLE) connection protocol, a requirement to discover defensive techniques to protect it with practical security analysis. Unfortunately, IoT-BLE is at risk of spoofing assaults where an attacker can pose as a gadget and provide its users a harmful information. Furthermore, due to the simplified strategy of this protocol, there were many security and privacy vulnerabilities. Justifying this quantitative security analysis with STRIDE Methodology change to create a framework to deal with protection issues for the IoT-BLE sensors. Therefore, providing probable attack scenarios for various exposures in this analysis, and offer mitigating strategies. In light of this authors performed STRIDE threat modeling to understand the attack surface for smart wearable devices supporting BLE. The study evaluates different exploitation scenarios Denial of Service (DoS), Elevation of privilege, Information disclosure, spoofing, Tampering, and repudiation on MI Band, One plus Band, Boat Storm smartwatch, and Fire Bolt Invincible.
The integration of permissioned blockchain such as Hyperledger fabric (HF) and Industrial internet of Things (IIoT) has opened new opportunities for interdependent supply chain partners to improve their performance through data sharing and coordination. The multichannel mechanism, private data collection and querying mechanism of HF enable private data sharing, transparency, traceability, and verification across the supply chain. However, the existing querying mechanism of HF needs further improvement for statistical data sharing because the query is evaluated on the original data recorded on the ledger. As a result, it gives rise to privacy issues such as leak of business secrets, tracking of resources and assets, and disclose of personal information. Therefore, we solve this problem by proposing a differentially private enhanced permissioned blockchain for private data sharing in the context of supply chain in IIoT which is known as (EDH-IIoT). We propose algorithms to efficiently utilize the $\epsilon$ through the reuse of the privacy budget for the repeated queries. Furthermore, the reuse and tracking of $\epsilon$ enable the data owner to get ensure that $\epsilon$ does not exceed the threshold which is the maximum privacy budget ($\epsilon_{t}$). Finally, we model two privacy attacks namely linking attack and composition attack to evaluate and compare privacy preservation, and the efficiency of reuse of {\epsilon} with the default chaincode of HF and traditional differential privacy model, respectively. The results confirm that EDH-IIoT obtains an accuracy of 97% in the shared data for $\epsilon_{t}$ = 1, and a reduction of 35.96% in spending of $\epsilon$.
With mobile, IoT and sensor devices becoming pervasive in our life and recent advances in Edge Computational Intelligence (e.g., Edge AI/ML), it became evident that the traditional methods for training AI/ML models are becoming obsolete, especially with the growing concerns over privacy and security. This work tries to highlight the key challenges that prohibit Edge AI/ML from seeing wide-range adoption in different sectors, especially for large-scale scenarios. Therefore, we focus on the main challenges acting as adoption barriers for the existing methods and propose a design with a drastic shift from the current ill-suited approaches. The new design is envisioned to be model-centric in which the trained models are treated as a commodity driving the exchange dynamics of collaborative learning in decentralized settings. It is expected that this design will provide a decentralized framework for efficient collaborative learning at scale.
The number of disclosed vulnerabilities has been steadily increasing over the years. At the same time, organizations face significant challenges patching their systems, leading to a need to prioritize vulnerability remediation in order to reduce the risk of attacks. Unfortunately, existing vulnerability scoring systems are either vendor-specific, proprietary, or are only commercially available. Moreover, these and other prioritization strategies based on vulnerability severity are poor predictors of actual vulnerability exploitation because they do not incorporate new information that might impact the likelihood of exploitation. In this paper we present the efforts behind building a Special Interest Group (SIG) that seeks to develop a completely data-driven exploit scoring system that produces scores for all known vulnerabilities, that is freely available, and which adapts to new information. The Exploit Prediction Scoring System (EPSS) SIG consists of more than 170 experts from around the world and across all industries, providing crowd-sourced expertise and feedback. Based on these collective insights, we describe the design decisions and trade-offs that lead to the development of the next version of EPSS. This new machine learning model provides an 82\% performance improvement over past models in distinguishing vulnerabilities that are exploited in the wild and thus may be prioritized for remediation.
Foundation models pretrained on diverse data at scale have demonstrated extraordinary capabilities in a wide range of vision and language tasks. When such models are deployed in real world environments, they inevitably interface with other entities and agents. For example, language models are often used to interact with human beings through dialogue, and visual perception models are used to autonomously navigate neighborhood streets. In response to these developments, new paradigms are emerging for training foundation models to interact with other agents and perform long-term reasoning. These paradigms leverage the existence of ever-larger datasets curated for multimodal, multitask, and generalist interaction. Research at the intersection of foundation models and decision making holds tremendous promise for creating powerful new systems that can interact effectively across a diverse range of applications such as dialogue, autonomous driving, healthcare, education, and robotics. In this manuscript, we examine the scope of foundation models for decision making, and provide conceptual tools and technical background for understanding the problem space and exploring new research directions. We review recent approaches that ground foundation models in practical decision making applications through a variety of methods such as prompting, conditional generative modeling, planning, optimal control, and reinforcement learning, and discuss common challenges and open problems in the field.
Deep neural networks (DNNs) have succeeded in many different perception tasks, e.g., computer vision, natural language processing, reinforcement learning, etc. The high-performed DNNs heavily rely on intensive resource consumption. For example, training a DNN requires high dynamic memory, a large-scale dataset, and a large number of computations (a long training time); even inference with a DNN also demands a large amount of static storage, computations (a long inference time), and energy. Therefore, state-of-the-art DNNs are often deployed on a cloud server with a large number of super-computers, a high-bandwidth communication bus, a shared storage infrastructure, and a high power supplement. Recently, some new emerging intelligent applications, e.g., AR/VR, mobile assistants, Internet of Things, require us to deploy DNNs on resource-constrained edge devices. Compare to a cloud server, edge devices often have a rather small amount of resources. To deploy DNNs on edge devices, we need to reduce the size of DNNs, i.e., we target a better trade-off between resource consumption and model accuracy. In this dissertation, we studied four edge intelligence scenarios, i.e., Inference on Edge Devices, Adaptation on Edge Devices, Learning on Edge Devices, and Edge-Server Systems, and developed different methodologies to enable deep learning in each scenario. Since current DNNs are often over-parameterized, our goal is to find and reduce the redundancy of the DNNs in each scenario.
Data transmission between two or more digital devices in industry and government demands secure and agile technology. Digital information distribution often requires deployment of Internet of Things (IoT) devices and Data Fusion techniques which have also gained popularity in both, civilian and military environments, such as, emergence of Smart Cities and Internet of Battlefield Things (IoBT). This usually requires capturing and consolidating data from multiple sources. Because datasets do not necessarily originate from identical sensors, fused data typically results in a complex Big Data problem. Due to potentially sensitive nature of IoT datasets, Blockchain technology is used to facilitate secure sharing of IoT datasets, which allows digital information to be distributed, but not copied. However, blockchain has several limitations related to complexity, scalability, and excessive energy consumption. We propose an approach to hide information (sensor signal) by transforming it to an image or an audio signal. In one of the latest attempts to the military modernization, we investigate sensor fusion approach by investigating the challenges of enabling an intelligent identification and detection operation and demonstrates the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application for specific hand gesture alert system from wearable devices.
Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.
Federated learning (FL) is an emerging, privacy-preserving machine learning paradigm, drawing tremendous attention in both academia and industry. A unique characteristic of FL is heterogeneity, which resides in the various hardware specifications and dynamic states across the participating devices. Theoretically, heterogeneity can exert a huge influence on the FL training process, e.g., causing a device unavailable for training or unable to upload its model updates. Unfortunately, these impacts have never been systematically studied and quantified in existing FL literature. In this paper, we carry out the first empirical study to characterize the impacts of heterogeneity in FL. We collect large-scale data from 136k smartphones that can faithfully reflect heterogeneity in real-world settings. We also build a heterogeneity-aware FL platform that complies with the standard FL protocol but with heterogeneity in consideration. Based on the data and the platform, we conduct extensive experiments to compare the performance of state-of-the-art FL algorithms under heterogeneity-aware and heterogeneity-unaware settings. Results show that heterogeneity causes non-trivial performance degradation in FL, including up to 9.2% accuracy drop, 2.32x lengthened training time, and undermined fairness. Furthermore, we analyze potential impact factors and find that device failure and participant bias are two potential factors for performance degradation. Our study provides insightful implications for FL practitioners. On the one hand, our findings suggest that FL algorithm designers consider necessary heterogeneity during the evaluation. On the other hand, our findings urge system providers to design specific mechanisms to mitigate the impacts of heterogeneity.
As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.
In recent years, mobile devices have gained increasingly development with stronger computation capability and larger storage. Some of the computation-intensive machine learning and deep learning tasks can now be run on mobile devices. To take advantage of the resources available on mobile devices and preserve users' privacy, the idea of mobile distributed machine learning is proposed. It uses local hardware resources and local data to solve machine learning sub-problems on mobile devices, and only uploads computation results instead of original data to contribute to the optimization of the global model. This architecture can not only relieve computation and storage burden on servers, but also protect the users' sensitive information. Another benefit is the bandwidth reduction, as various kinds of local data can now participate in the training process without being uploaded to the server. In this paper, we provide a comprehensive survey on recent studies of mobile distributed machine learning. We survey a number of widely-used mobile distributed machine learning methods. We also present an in-depth discussion on the challenges and future directions in this area. We believe that this survey can demonstrate a clear overview of mobile distributed machine learning and provide guidelines on applying mobile distributed machine learning to real applications.