We present the design and implementation of WaveFlex, the first smart surface that enhances Private LTE/5G networks operating under the shared-license framework in the Citizens Broadband Radio Service frequency band. WaveFlex works in the presence of frequency diversity: multiple nearby base stations operating on different frequencies, as dictated by a Spectrum Access System coordinator. It also handles time dynamism: due to the dynamic sharing rules of the band, base stations occasionally switch channels, especially when priority users enter the network. Finally, WaveFlex operates independently of the network itself, not requiring access to nor modification of the base station or mobile users, yet it remain compliant with and effective on prevailing cellular protocols. We have designed and fabricated WaveFlex on a custom multi-layer PCB, software defined radio-based network monitor, and supporting control software and hardware. Our experimental evaluation benchmarks an operational Private LTE network running at full line rate. Results demonstrate an 8.50 dB average SNR gain, and an average throughput gain of 4.36 Mbps for a single small cell, and 3.19 Mbps for four small cells, in a realistic indoor office scenario.
In this paper, we present Jellyfish, an open-source LLM as a universal task solver for DP. Built on the Llama 2 13B model, Jellyfish is instruction-tuned with the datasets of several typical DP tasks including error detection, data imputation, schema matching, and entity matching, and delivers generalizability to other tasks. Remarkably, Jellyfish can operate on a local, single, and low-priced GPU with its 13 billion parameters, ensuring data security and enabling further tuning. Its proficiency in understanding natural language allows users to manually craft instructions for DP tasks. Unlike many existing methods that heavily rely on prior knowledge, Jellyfish acquires domain knowledge during its tuning process and integrates optional knowledge injection during inference. A distinctive feature of Jellyfish is its interpreter, which elucidates its output decisions. To construct Jellyfish, we develop a series of pre-tuning and DP-tuning techniques. Jellyfish is equipped with an instance serializer, which automatically translates raw data into model prompts, and a knowledge injector, which optionally introduces task- and dataset-specific knowledge to enhance DP performance. Our evaluation of Jellyfish, using a range of real datasets, shows its competitiveness compared to state-of-the-art methods and its strong generalizability to unseen tasks. Jellyfish's performance rivals that of GPT series models, and its interpreter offers enhanced reasoning capabilities compared to GPT-3.5. Furthermore, our evaluation highlights the effectiveness of the techniques employed in constructing Jellyfish. Our model is available at Hugging Face: //huggingface.co/NECOUDBFM/Jellyfish .
Existing Graph Neural Network (GNN) training frameworks have been designed to help developers easily create performant GNN implementations. However, most existing GNN frameworks assume that the input graphs are static, but ignore that most real-world graphs are constantly evolving. Though many dynamic GNN models have emerged to learn from evolving graphs, the training process of these dynamic GNNs is dramatically different from traditional GNNs in that it captures both the spatial and temporal dependencies of graph updates. This poses new challenges for designing dynamic GNN training frameworks. First, the traditional batched training method fails to capture real-time structural evolution information. Second, the time-dependent nature makes parallel training hard to design. Third, it lacks system supports for users to efficiently implement dynamic GNNs. In this paper, we present NeutronStream, a framework for training dynamic GNN models. NeutronStream abstracts the input dynamic graph into a chronologically updated stream of events and processes the stream with an optimized sliding window to incrementally capture the spatial-temporal dependencies of events. Furthermore, NeutronStream provides a parallel execution engine to tackle the sequential event processing challenge to achieve high performance. NeutronStream also integrates a built-in graph storage structure that supports dynamic updates and provides a set of easy-to-use APIs that allow users to express their dynamic GNNs. Our experimental results demonstrate that, compared to state-of-the-art dynamic GNN implementations, NeutronStream achieves speedups ranging from 1.48X to 5.87X and an average accuracy improvement of 3.97%.
This article introduces GIT-Net, a deep neural network architecture for approximating Partial Differential Equation (PDE) operators, inspired by integral transform operators. GIT-NET harnesses the fact that differential operators commonly used for defining PDEs can often be represented parsimoniously when expressed in specialized functional bases (e.g., Fourier basis). Unlike rigid integral transforms, GIT-Net parametrizes adaptive generalized integral transforms with deep neural networks. When compared to several recently proposed alternatives, GIT-Net's computational and memory requirements scale gracefully with mesh discretizations, facilitating its application to PDE problems on complex geometries. Numerical experiments demonstrate that GIT-Net is a competitive neural network operator, exhibiting small test errors and low evaluations across a range of PDE problems. This stands in contrast to existing neural network operators, which typically excel in just one of these areas.
The security of microcontrollers, which drive modern IoT and embedded devices, continues to raise major concerns. Within a microcontroller (MCU), the firmware is a monolithic piece of software that contains the whole software stack, whereas a variety of peripherals represent the hardware. As MCU firmware contains vulnerabilities, it is ideal to test firmware with off-the-shelf software testing techniques, such as dynamic symbolic execution and fuzzing. Nevertheless, no emulator can emulate the diverse MCU peripherals or execute/test the firmware. Specifically, the interrupt interface, among all I/O interfaces used by MCU peripherals, is extremely challenging to emulate. In this paper, we present AIM -- a generic, scalable, and hardware-independent dynamic firmware analysis framework that supports unemulated MCU peripherals by a novel interrupt modeling mechanism. AIM effectively and efficiently covers interrupt-dependent code in firmware by a novel, firmware-guided, Just-in-Time Interrupt Firing technique. We implemented our framework in angr and performed dynamic symbolic execution for eight real-world MCU firmware. According to testing results, our framework covered up to 11.2 times more interrupt-dependent code than state-of-the-art approaches while accomplishing several challenging goals not feasible previously. Finally, a comparison with a state-of-the-art firmware fuzzer demonstrates dynamic symbolic execution and fuzzing together can achieve better firmware testing coverage.
The unprecedented advancements in Large Language Models (LLMs) have shown a profound impact on natural language processing but are yet to fully embrace the realm of 3D understanding. This paper introduces PointLLM, a preliminary effort to fill this gap, enabling LLMs to understand point clouds and offering a new avenue beyond 2D visual data. PointLLM understands colored object point clouds with human instructions and generates contextually appropriate responses, illustrating its grasp of point clouds and common sense. Specifically, it leverages a point cloud encoder with a powerful LLM to effectively fuse geometric, appearance, and linguistic information. We collect a novel dataset comprising 660K simple and 70K complex point-text instruction pairs to enable a two-stage training strategy: aligning latent spaces and subsequently instruction-tuning the unified model. To rigorously evaluate the perceptual and generalization capabilities of PointLLM, we establish two benchmarks: Generative 3D Object Classification and 3D Object Captioning, assessed through three different methods, including human evaluation, GPT-4/ChatGPT evaluation, and traditional metrics. Experimental results reveal PointLLM's superior performance over existing 2D and 3D baselines, with a notable achievement in human-evaluated object captioning tasks where it surpasses human annotators in over 50% of the samples. Codes, datasets, and benchmarks are available at //github.com/OpenRobotLab/PointLLM .
Deploying Large Language Models (LLMs) locally on mobile devices presents a significant challenge due to their extensive memory requirements. In this paper, we introduce LinguaLinked, a system for decentralized, distributed LLM inference on mobile devices. LinguaLinked enables collaborative execution of the inference task across multiple trusted devices. LinguaLinked ensures data privacy by processing information locally. LinguaLinked uses three key strategies. First, an optimized model assignment technique segments LLMs and uses linear optimization to align segments with each device's capabilities. Second, an optimized data transmission mechanism ensures efficient and structured data flow between model segments while also maintaining the integrity of the original model structure. Finally, LinguaLinked incorporates a runtime load balancer that actively monitors and redistributes tasks among mobile devices to prevent bottlenecks, enhancing the system's overall efficiency and responsiveness. We demonstrate that LinguaLinked facilitates efficient LLM inference while maintaining consistent throughput and minimal latency through extensive testing across various mobile devices, from high-end to low-end Android devices. In our evaluations, compared to the baseline, LinguaLinked achieves an inference performance acceleration of $1.11\times$ to $1.61\times$ in single-threaded settings, $1.73\times$ to $2.65\times$ with multi-threading. Additionally, runtime load balancing yields an overall inference acceleration of $1.29\times$ to $1.32\times$.
Traditional robotic systems require complex implementations that are not always accessible or easy to use for Human-Robot Interaction (HRI) application developers. With the aim of simplifying the implementation of HRI applications, this paper introduces a novel real-time operating system (RTOS) designed for customizable HRI - RoboSync. By creating multi-level abstraction layers, the system enables users to define complex emotional and behavioral models without needing deep technical expertise. The system's modular architecture comprises a behavior modeling layer, a machine learning plugin configuration layer, a sensor checks customization layer, a scheduler that fits the need of HRI, and a communication and synchronization layer. This approach not only promotes ease of use without highly specialized skills but also ensures real-time responsiveness and adaptability. The primary functionality of the RTOS has been implemented for proof of concept and was tested on a CortexM4 microcontroller, demonstrating its potential for a wide range of lightweight simple-to-implement social robotics applications.
Point cloud-based large scale place recognition is fundamental for many applications like Simultaneous Localization and Mapping (SLAM). Although many models have been proposed and have achieved good performance by learning short-range local features, long-range contextual properties have often been neglected. Moreover, the model size has also become a bottleneck for their wide applications. To overcome these challenges, we propose a super light-weight network model termed SVT-Net for large scale place recognition. Specifically, on top of the highly efficient 3D Sparse Convolution (SP-Conv), an Atom-based Sparse Voxel Transformer (ASVT) and a Cluster-based Sparse Voxel Transformer (CSVT) are proposed to learn both short-range local features and long-range contextual features in this model. Consisting of ASVT and CSVT, SVT-Net can achieve state-of-the-art on benchmark datasets in terms of both accuracy and speed with a super-light model size (0.9M). Meanwhile, two simplified versions of SVT-Net are introduced, which also achieve state-of-the-art and further reduce the model size to 0.8M and 0.4M respectively.
We present Emu, a system that semantically enhances multilingual sentence embeddings. Our framework fine-tunes pre-trained multilingual sentence embeddings using two main components: a semantic classifier and a language discriminator. The semantic classifier improves the semantic similarity of related sentences, whereas the language discriminator enhances the multilinguality of the embeddings via multilingual adversarial training. Our experimental results based on several language pairs show that our specialized embeddings outperform the state-of-the-art multilingual sentence embedding model on the task of cross-lingual intent classification using only monolingual labeled data.
We present Generative Adversarial Capsule Network (CapsuleGAN), a framework that uses capsule networks (CapsNets) instead of the standard convolutional neural networks (CNNs) as discriminators within the generative adversarial network (GAN) setting, while modeling image data. We provide guidelines for designing CapsNet discriminators and the updated GAN objective function, which incorporates the CapsNet margin loss, for training CapsuleGAN models. We show that CapsuleGAN outperforms convolutional-GAN at modeling image data distribution on the MNIST dataset of handwritten digits, evaluated on the generative adversarial metric and at semi-supervised image classification.