亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Convex splitting is a powerful technique in quantum information theory used in proving the achievability of numerous information-processing protocols such as quantum state redistribution and quantum network channel coding. In this work, we establish a one-shot error exponent and a one-shot strong converse for convex splitting with trace distance as an error criterion. Our results show that the derived error exponent (strong converse exponent) is positive if and only if the rate is in (outside) the achievable region. This leads to new one-shot exponent results in various tasks such as communication over quantum wiretap channels, secret key distillation, one-way quantum message compression, quantum measurement simulation, and quantum channel coding with side information at the transmitter. We also establish a near-optimal one-shot characterization of the sample complexity for convex splitting, which yields matched second-order asymptotics. This then leads to stronger one-shot analysis in many quantum information-theoretic tasks.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · Performer · Analysis · FFT · 解碼 ·
2023 年 6 月 20 日

LoRa backscatter (LB) communication systems can be considered as a potential candidate for ultra low power wide area networks (LPWAN) because of their low cost and low power consumption. In this paper, we comprehensively analyze LB modulation from various aspects, i.e., temporal, spectral, and error performance characteristics. First, we propose a signal model for LB signals that accounts for the limited number of loads in the tag. Then, we investigate the spectral properties of LB signals, obtaining a closed-form expression for the power spectrum. Finally, we derived the symbol error rate (SER) of LB with two decoders, i.e., the maximum likelihood (ML) and fast Fourier transform (FFT) decoders, in both additive white Gaussian noise (AWGN) and double Nakagami-m fading channels. The spectral analysis shows that out-of-band emissions for LB satisfy the European Telecommunications Standards Institute (ETSI) regulation only when considering a relatively large number of loads. For the error performance, unlike conventional LoRa, the FFT decoder is not optimal. Nevertheless, the ML decoder can achieve a performance similar to conventional LoRa with a moderate number of loads.

Extended Dynamic Mode Decomposition (EDMD) is a data-driven tool for forecasting and model reduction of dynamics, which has been extensively taken up in the physical sciences. While the method is conceptually simple, in deterministic chaos it is unclear what its properties are or even what it converges to. In particular, it is not clear how EDMD's least-squares approximation treats the classes of regular functions needed to make sense of chaotic dynamics. We develop for the first time a general, rigorous theory of EDMD on the simplest examples of chaotic maps: analytic expanding maps of the circle. To do this, we prove a new, basic approximation result in the theory of orthogonal polynomials on the unit circle (OPUC) and apply methods from transfer operator theory. We show that in the infinite-data limit, the least-squares projection error is exponentially small for trigonometric polynomial observable dictionaries. As a result, we show that the forecasts and Koopman spectral data produced using EDMD in this setting converge to the physically meaningful limits, exponentially fast with respect to the size of the dictionary. This demonstrates that with only a relatively small polynomial dictionary, EDMD can be very effective, even when the sampling measure is not uniform. Furthermore, our OPUC result suggests that data-based least-squares projections may be a very effective approximation strategy.

Social networks have been widely studied over the last century from multiple disciplines to understand societal issues such as inequality in employment rates, managerial performance, and epidemic spread. Today, these and many more issues can be studied at global scale thanks to the digital footprints that we generate when browsing the Web or using social media platforms. Unfortunately, scientists often struggle to access to such data primarily because it is proprietary, and even when it is shared with privacy guarantees, such data is either no representative or too big. In this tutorial, we will discuss recent advances and future directions in network modeling. In particular, we focus on how to exploit synthetic networks to study real-world problems such as data privacy, spreading dynamics, algorithmic bias, and ranking inequalities. We start by reviewing different types of generative models for social networks including node-attributed and scale-free networks. Then, we showcase how to perform a network selection analysis to characterize the mechanisms of edge formation of any given real-world network.

In multivariate time series analysis, the coherence measures the linear dependency between two-time series at different frequencies. However, real data applications often exhibit nonlinear dependency in the frequency domain. Conventional coherence analysis fails to capture such dependency. The quantile coherence, on the other hand, characterizes nonlinear dependency by defining the coherence at a set of quantile levels based on trigonometric quantile regression. Although quantile coherence is a more powerful tool, its estimation remains challenging due to the high level of noise. This paper introduces a new estimation technique for quantile coherence. The proposed method is semi-parametric, which uses the parametric form of the spectrum of the vector autoregressive (VAR) model as an approximation to the quantile spectral matrix, along with nonparametric smoothing across quantiles. For each fixed quantile level, we obtain the VAR parameters from the quantile periodograms, then, using the Durbin-Levinson algorithm, we calculate the preliminary estimate of quantile coherence using the VAR parameters. Finally, we smooth the preliminary estimate of quantile coherence across quantiles using a nonparametric smoother. Numerical results show that the proposed estimation method outperforms nonparametric methods. We show that quantile coherence-based bivariate time series clustering has advantages over the ordinary VAR coherence. For applications, the identified clusters of financial stocks by quantile coherence with a market benchmark are shown to have an intriguing and more accurate structure of diversified investment portfolios that may be used by investors to make better decisions.

We propose a family of recursive cutting-plane algorithms to solve feasibility problems with constrained memory, which can also be used for first-order convex optimization. Precisely, in order to find a point within a ball of radius $\epsilon$ with a separation oracle in dimension $d$ -- or to minimize $1$-Lipschitz convex functions to accuracy $\epsilon$ over the unit ball -- our algorithms use $\mathcal O(\frac{d^2}{p}\ln \frac{1}{\epsilon})$ bits of memory, and make $\mathcal O((C\frac{d}{p}\ln \frac{1}{\epsilon})^p)$ oracle calls, for some universal constant $C \geq 1$. The family is parametrized by $p\in[d]$ and provides an oracle-complexity/memory trade-off in the sub-polynomial regime $\ln\frac{1}{\epsilon}\gg\ln d$. While several works gave lower-bound trade-offs (impossibility results) -- we explicit here their dependence with $\ln\frac{1}{\epsilon}$, showing that these also hold in any sub-polynomial regime -- to the best of our knowledge this is the first class of algorithms that provides a positive trade-off between gradient descent and cutting-plane methods in any regime with $\epsilon\leq 1/\sqrt d$. The algorithms divide the $d$ variables into $p$ blocks and optimize over blocks sequentially, with approximate separation vectors constructed using a variant of Vaidya's method. In the regime $\epsilon \leq d^{-\Omega(d)}$, our algorithm with $p=d$ achieves the information-theoretic optimal memory usage and improves the oracle-complexity of gradient descent.

For modern gradient-based optimization, a developmental landmark is Nesterov's accelerated gradient descent method, which is proposed in [Nesterov, 1983], so shorten as Nesterov-1983. Afterward, one of the important progresses is its proximal generalization, named the fast iterative shrinkage-thresholding algorithm (FISTA), which is widely used in image science and engineering. However, it is unknown whether both Nesterov-1983 and FISTA converge linearly on the strongly convex function, which has been listed as the open problem in the comprehensive review [Chambolle and Pock, 2016, Appendix B]. In this paper, we answer this question by the use of the high-resolution differential equation framework. Along with the phase-space representation previously adopted, the key difference here in constructing the Lyapunov function is that the coefficient of the kinetic energy varies with the iteration. Furthermore, we point out that the linear convergence of both the two algorithms above has no dependence on the parameter $r$ on the strongly convex function. Meanwhile, it is also obtained that the proximal subgradient norm converges linearly.

This work introduces a dataset, benchmark, and challenge for the problem of video copy detection and localization. The problem comprises two distinct but related tasks: determining whether a query video shares content with a reference video ("detection"), and additionally temporally localizing the shared content within each video ("localization"). The benchmark is designed to evaluate methods on these two tasks, and simulates a realistic needle-in-haystack setting, where the majority of both query and reference videos are "distractors" containing no copied content. We propose a metric that reflects both detection and localization accuracy. The associated challenge consists of two corresponding tracks, each with restrictions that reflect real-world settings. We provide implementation code for evaluation and baselines. We also analyze the results and methods of the top submissions to the challenge. The dataset, baseline methods and evaluation code is publicly available and will be discussed at a dedicated CVPR'23 workshop.

Graph neural networks generalize conventional neural networks to graph-structured data and have received widespread attention due to their impressive representation ability. In spite of the remarkable achievements, the performance of Euclidean models in graph-related learning is still bounded and limited by the representation ability of Euclidean geometry, especially for datasets with highly non-Euclidean latent anatomy. Recently, hyperbolic space has gained increasing popularity in processing graph data with tree-like structure and power-law distribution, owing to its exponential growth property. In this survey, we comprehensively revisit the technical details of the current hyperbolic graph neural networks, unifying them into a general framework and summarizing the variants of each component. More importantly, we present various HGNN-related applications. Last, we also identify several challenges, which potentially serve as guidelines for further flourishing the achievements of graph learning in hyperbolic spaces.

In 1954, Alston S. Householder published Principles of Numerical Analysis, one of the first modern treatments on matrix decomposition that favored a (block) LU decomposition-the factorization of a matrix into the product of lower and upper triangular matrices. And now, matrix decomposition has become a core technology in machine learning, largely due to the development of the back propagation algorithm in fitting a neural network. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in numerical linear algebra and matrix analysis in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of the Euclidean space, Hermitian space, Hilbert space, and things in the complex domain. We refer the reader to literature in the field of linear algebra for a more detailed introduction to the related fields.

In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax

北京阿比特科技有限公司