亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In a recent paper published in the Journal of Language Evolution, Kauhanen, Einhaus & Walkden (//doi.org/10.1093/jole/lzad005, KEW) challenge the results presented in one of my papers (Koplenig, Royal Society Open Science, 6, 181274 (2019), //doi.org/10.1098/rsos.181274), in which I tried to show through a series of statistical analyses that large numbers of L2 (second language) speakers do not seem to affect the (grammatical or statistical) complexity of a language. To this end, I focus on the way in which the Ethnologue assesses language status: a language is characterised as vehicular if, in addition to being used by L1 (first language) speakers, it should also have a significant number of L2 users. KEW criticise both the use of vehicularity as a (binary) indicator of whether a language has a significant number of L2 users and the idea of imputing a zero proportion of L2 speakers to non-vehicular languages whenever a direct estimate of that proportion is unavailable. While I recognise the importance of post-publication commentary on published research, I show in this rejoinder that both points of criticism are explicitly mentioned and analysed in my paper. In addition, I also comment on other points raised by KEW and demonstrate that both alternative analyses offered by KEW do not stand up to closer scrutiny.

相關內容

Brain structural MRI has been widely used to assess the future progression of cognitive impairment (CI). Previous learning-based studies usually suffer from the issue of small-sized labeled training data, while there exist a huge amount of structural MRIs in large-scale public databases. Intuitively, brain anatomical structures derived from these public MRIs (even without task-specific label information) can be used to boost CI progression trajectory prediction. However, previous studies seldom take advantage of such brain anatomy prior. To this end, this paper proposes a brain anatomy prior modeling (BAPM) framework to forecast the clinical progression of cognitive impairment with small-sized target MRIs by exploring anatomical brain structures. Specifically, the BAPM consists of a pretext model and a downstream model, with a shared brain anatomy-guided encoder to model brain anatomy prior explicitly. Besides the encoder, the pretext model also contains two decoders for two auxiliary tasks (i.e., MRI reconstruction and brain tissue segmentation), while the downstream model relies on a predictor for classification. The brain anatomy-guided encoder is pre-trained with the pretext model on 9,344 auxiliary MRIs without diagnostic labels for anatomy prior modeling. With this encoder frozen, the downstream model is then fine-tuned on limited target MRIs for prediction. We validate the BAPM on two CI-related studies with T1-weighted MRIs from 448 subjects. Experimental results suggest the effectiveness of BAPM in (1) four CI progression prediction tasks, (2) MR image reconstruction, and (3) brain tissue segmentation, compared with several state-of-the-art methods.

Humankind is entering a novel creative era in which anybody can synthesize digital information using generative artificial intelligence (AI). Text-to-image generation, in particular, has become vastly popular and millions of practitioners produce AI-generated images and AI art online. This chapter first gives an overview of the key developments that enabled a healthy co-creative online ecosystem around text-to-image generation to rapidly emerge, followed by a high-level description of key elements in this ecosystem. A particular focus is placed on prompt engineering, a creative practice that has been embraced by the AI art community. It is then argued that the emerging co-creative ecosystem constitutes an intelligent system on its own - a system that both supports human creativity, but also potentially entraps future generations and limits future development efforts in AI. The chapter discusses the potential risks and dangers of cultivating this co-creative ecosystem, such as the bias inherent in today's training data, potential quality degradation in future image generation systems due to synthetic data becoming common place, and the potential long-term effects of text-to-image generation on people's imagination, ambitions, and development.

Recent studies indicate that kernel machines can often perform similarly or better than deep neural networks (DNNs) on small datasets. The interest in kernel machines has been additionally bolstered by the discovery of their equivalence to wide neural networks in certain regimes. However, a key feature of DNNs is their ability to scale the model size and training data size independently, whereas in traditional kernel machines model size is tied to data size. Because of this coupling, scaling kernel machines to large data has been computationally challenging. In this paper, we provide a way forward for constructing large-scale general kernel models, which are a generalization of kernel machines that decouples the model and data, allowing training on large datasets. Specifically, we introduce EigenPro 3.0, an algorithm based on projected dual preconditioned SGD and show scaling to model and data sizes which have not been possible with existing kernel methods.

Large models have recently played a dominant role in natural language processing and multimodal vision-language learning. It remains less explored about their efficacy in text-related visual tasks. We conducted a comprehensive study of existing publicly available multimodal models, evaluating their performance in text recognition (document text, artistic text, handwritten text, scene text), text-based visual question answering (document text, scene text, and bilingual text), key information extraction (receipts, documents, and nutrition facts) and handwritten mathematical expression recognition. Our findings reveal strengths and weaknesses in these models, which primarily rely on semantic understanding for word recognition and exhibit inferior perception of individual character shapes. They also display indifference towards text length and have limited capabilities in detecting finegrained features in images. Consequently, these results demonstrate that even the current most powerful large multimodal models cannot match domain-specific methods in traditional text tasks and face greater challenges in more complex tasks. Most importantly, the baseline results showcased in this study could provide a foundational framework for the conception and assessment of innovative strategies targeted at enhancing zero-shot multimodal techniques. Evaluation pipeline is available at //github.com/Yuliang-Liu/MultimodalOCR.

In this paper, we evaluate feature extraction models for predicting speech quality. We also propose a model architecture to compare embeddings of supervised learning and self-supervised learning models with embeddings of speaker verification models to predict the metric MOS. Our experiments were performed on the VCC2018 dataset and a Brazilian-Portuguese dataset called BRSpeechMOS, which was created for this work. The results show that the Whisper model is appropriate in all scenarios: with both the VCC2018 and BRSpeech- MOS datasets. Among the supervised and self-supervised learning models using BRSpeechMOS, Whisper-Small achieved the best linear correlation of 0.6980, and the speaker verification model, SpeakerNet, had linear correlation of 0.6963. Using VCC2018, the best supervised and self-supervised learning model, Whisper-Large, achieved linear correlation of 0.7274, and the best model speaker verification, TitaNet, achieved a linear correlation of 0.6933. Although the results of the speaker verification models are slightly lower, the SpeakerNet model has only 5M parameters, making it suitable for real-time applications, and the TitaNet model produces an embedding of size 192, the smallest among all the evaluated models. The experiment results are reproducible with publicly available source-code1 .

Two numerical schemes are proposed and investigated for the Yang--Mills equations, which can be seen as a nonlinear generalisation of the Maxwell equations set on Lie algebra-valued functions, with similarities to certain formulations of General Relativity. Both schemes are built on the Discrete de Rham (DDR) method, and inherit from its main features: an arbitrary order of accuracy, and applicability to generic polyhedral meshes. They make use of the complex property of the DDR, together with a Lagrange-multiplier approach, to preserve, at the discrete level, a nonlinear constraint associated with the Yang--Mills equations. We also show that the schemes satisfy a discrete energy dissipation (the dissipation coming solely from the implicit time stepping). Issues around the practical implementations of the schemes are discussed; in particular, the assembly of the local contributions in a way that minimises the price we pay in dealing with nonlinear terms, in conjunction with the tensorisation coming from the Lie algebra. Numerical tests are provided using a manufactured solution, and show that both schemes display a convergence in $L^2$-norm of the potential and electrical fields in $\mathcal O(h^{k+1})$ (provided that the time step is of that order), where $k$ is the polynomial degree chosen for the DDR complex. We also numerically demonstrate the preservation of the constraint.

For modern gradient-based optimization, a developmental landmark is Nesterov's accelerated gradient descent method, which is proposed in [Nesterov, 1983], so shorten as Nesterov-1983. Afterward, one of the important progresses is its proximal generalization, named the fast iterative shrinkage-thresholding algorithm (FISTA), which is widely used in image science and engineering. However, it is unknown whether both Nesterov-1983 and FISTA converge linearly on the strongly convex function, which has been listed as the open problem in the comprehensive review [Chambolle and Pock, 2016, Appendix B]. In this paper, we answer this question by the use of the high-resolution differential equation framework. Along with the phase-space representation previously adopted, the key difference here in constructing the Lyapunov function is that the coefficient of the kinetic energy varies with the iteration. Furthermore, we point out that the linear convergence of both the two algorithms above has no dependence on the parameter $r$ on the strongly convex function. Meanwhile, it is also obtained that the proximal subgradient norm converges linearly.

Multivariate sequential data collected in practice often exhibit temporal irregularities, including nonuniform time intervals and component misalignment. However, if uneven spacing and asynchrony are endogenous characteristics of the data rather than a result of insufficient observation, the information content of these irregularities plays a defining role in characterizing the multivariate dependence structure. Existing approaches for probabilistic forecasting either overlook the resulting statistical heterogeneities, are susceptible to imputation biases, or impose parametric assumptions on the data distribution. This paper proposes an end-to-end solution that overcomes these limitations by allowing the observation arrival times to play the central role of model construction, which is at the core of temporal irregularities. To acknowledge temporal irregularities, we first enable unique hidden states for components so that the arrival times can dictate when, how, and which hidden states to update. We then develop a conditional flow representation to non-parametrically represent the data distribution, which is typically non-Gaussian, and supervise this representation by carefully factorizing the log-likelihood objective to select conditional information that facilitates capturing time variation and path dependency. The broad applicability and superiority of the proposed solution are confirmed by comparing it with existing approaches through ablation studies and testing on real-world datasets.

Learning on big data brings success for artificial intelligence (AI), but the annotation and training costs are expensive. In future, learning on small data is one of the ultimate purposes of AI, which requires machines to recognize objectives and scenarios relying on small data as humans. A series of machine learning models is going on this way such as active learning, few-shot learning, deep clustering. However, there are few theoretical guarantees for their generalization performance. Moreover, most of their settings are passive, that is, the label distribution is explicitly controlled by one specified sampling scenario. This survey follows the agnostic active sampling under a PAC (Probably Approximately Correct) framework to analyze the generalization error and label complexity of learning on small data using a supervised and unsupervised fashion. With these theoretical analyses, we categorize the small data learning models from two geometric perspectives: the Euclidean and non-Euclidean (hyperbolic) mean representation, where their optimization solutions are also presented and discussed. Later, some potential learning scenarios that may benefit from small data learning are then summarized, and their potential learning scenarios are also analyzed. Finally, some challenging applications such as computer vision, natural language processing that may benefit from learning on small data are also surveyed.

Large-scale pre-trained models (PTMs) such as BERT and GPT have recently achieved great success and become a milestone in the field of artificial intelligence (AI). Owing to sophisticated pre-training objectives and huge model parameters, large-scale PTMs can effectively capture knowledge from massive labeled and unlabeled data. By storing knowledge into huge parameters and fine-tuning on specific tasks, the rich knowledge implicitly encoded in huge parameters can benefit a variety of downstream tasks, which has been extensively demonstrated via experimental verification and empirical analysis. It is now the consensus of the AI community to adopt PTMs as backbone for downstream tasks rather than learning models from scratch. In this paper, we take a deep look into the history of pre-training, especially its special relation with transfer learning and self-supervised learning, to reveal the crucial position of PTMs in the AI development spectrum. Further, we comprehensively review the latest breakthroughs of PTMs. These breakthroughs are driven by the surge of computational power and the increasing availability of data, towards four important directions: designing effective architectures, utilizing rich contexts, improving computational efficiency, and conducting interpretation and theoretical analysis. Finally, we discuss a series of open problems and research directions of PTMs, and hope our view can inspire and advance the future study of PTMs.

北京阿比特科技有限公司