Recent research has shown that language models have a tendency to memorize rare or unique token sequences in the training corpus. After deploying a model, practitioners might be asked to delete any personal information from the model by individuals' requests. Re-training the underlying model every time individuals would like to practice their rights to be forgotten is computationally expensive. We employ a teacher-student framework and propose a novel leave-one-out ensemble method to unlearn the targeted textual sequences that need to be forgotten from the model. In our approach, multiple teachers are trained on disjoint sets; for each targeted sequence to be removed, we exclude the teacher trained on the set containing this sequence and aggregate the predictions from remaining teachers to provide supervision during fine-tuning. Experiments on LibriSpeech and WikiText-103 datasets show that the proposed method achieves superior privacy-utility trade-offs than other counterparts.
Iterative approximation methods using backpropagation enable the optimization of neural networks, but they remain computationally expensive, especially when used at scale. This paper presents an efficient alternative for optimizing neural networks that reduces the costs of scaling neural networks and provides high-efficiency optimizations for low-resource applications. We will discuss a general result about feed-forward neural networks and then extend this solution to compositional (mult-layer) networks, which are applied to a simplified transformer block containing feed-forward and self-attention layers. These models are used to train highly-specified and complex multi-layer neural architectures that we refer to as self-attentive feed-forward unit (SAFFU) layers, which we use to develop a transformer that appears to generalize well over small, cognitively-feasible, volumes of data. Testing demonstrates explicit solutions outperform models optimized by backpropagation alone. Moreover, further application of backpropagation after explicit solutions leads to better optima from smaller scales of data, training effective models from much less data is enabled by explicit solution warm starts. We then carry out ablation experiments training a roadmap of about 250 transformer models over 1-million tokens to determine ideal settings. We find that multiple different architectural variants produce highly-performant models, and discover from this ablation that some of the best are not the most parameterized. This appears to indicate well-generalized models could be reached using less data by using explicit solutions, and that architectural exploration using explicit solutions pays dividends in guiding the search for efficient variants with fewer parameters, and which could be incorporated into low-resource hardware where AI might be embodied.
Large-scale pretraining and instruction tuning have been successful for training general-purpose language models with broad competencies. However, extending to general-purpose vision-language models is challenging due to the distributional diversity in visual inputs. A recent line of work explores vision-language instruction tuning, taking inspiration from the Query Transformer (QFormer) approach proposed in BLIP-2 models for bridging frozen modalities. However, these approaches rely heavily on large-scale multi-modal pretraining for representation learning before eventual finetuning, incurring a huge computational overhead, poor scaling, and limited accessibility. To that end, we propose a more efficient method for QFormer-based vision-language alignment and demonstrate the effectiveness of our strategy compared to existing baselines in improving the efficiency of vision-language pretraining.
Deep learning has shown promise in decoding brain signals, such as electroencephalogram (EEG), in the field of brain-computer interfaces (BCIs). However, the non-stationary characteristics of EEG signals pose challenges for training neural networks to acquire appropriate knowledge. Inconsistent EEG signals resulting from these non-stationary characteristics can lead to poor performance. Therefore, it is crucial to investigate and address sample inconsistency to ensure robust performance in spontaneous BCIs. In this study, we introduce the concept of sample dominance as a measure of EEG signal inconsistency and propose a method to modulate its effect on network training. We present a two-stage dominance score estimation technique that compensates for performance degradation caused by sample inconsistencies. Our proposed method utilizes non-parametric estimation to infer sample inconsistency and assigns each sample a dominance score. This score is then aggregated with the loss function during training to modulate the impact of sample inconsistency. Furthermore, we design a curriculum learning approach that gradually increases the influence of inconsistent signals during training to improve overall performance. We evaluate our proposed method using public spontaneous BCI dataset. The experimental results confirm that our findings highlight the importance of addressing sample dominance for achieving robust performance in spontaneous BCIs.
Robotic skill learning has been increasingly studied but the demonstration collections are more challenging compared to collecting images/videos in computer vision and texts in natural language processing. This paper presents a skill learning paradigm by using intuitive teleoperation devices to generate high-quality human demonstrations efficiently for robotic skill learning in a data-driven manner. By using a reliable teleoperation interface, the da Vinci Research Kit (dVRK) master, a system called dVRK-Simulator-for-Demonstration (dS4D) is proposed in this paper. Various manipulation tasks show the system's effectiveness and advantages in efficiency compared to other interfaces. Using the collected data for policy learning has been investigated, which verifies the initial feasibility. We believe the proposed paradigm can facilitate robot learning driven by high-quality demonstrations and efficiency while generating them.
Large pre-trained sequence models, such as transformer-based architectures, have been recently shown to have the capacity to carry out in-context learning (ICL). In ICL, a decision on a new input is made via a direct mapping of the input and of a few examples from the given task, serving as the task's context, to the output variable. No explicit updates of model parameters are needed to tailor the decision to a new task. Pre-training, which amounts to a form of meta-learning, is based on the observation of examples from several related tasks. Prior work has shown ICL capabilities for linear regression. In this study, we leverage ICL to address the inverse problem of multiple-input and multiple-output (MIMO) equalization based on a context given by pilot symbols. A task is defined by the unknown fading channel and by the signal-to-noise ratio (SNR) level, which may be known. To highlight the practical potential of the approach, we allow for the presence of quantization of the received signals. We demonstrate via numerical results that transformer-based ICL has a threshold behavior, whereby, as the number of pre-training tasks grows, the performance switches from that of a minimum mean squared error (MMSE) equalizer with a prior determined by the pre-trained tasks to that of an MMSE equalizer with the true data-generating prior.
Robustness has become an important consideration in deep learning. With the help of explainable AI, mismatches between an explained model's decision strategy and the user's domain knowledge (e.g. Clever Hans effects) have been identified as a starting point for improving faulty models. However, it is less clear what to do when the user and the explanation agree. In this paper, we demonstrate that acceptance of explanations by the user is not a guarantee for a machine learning model to be robust against Clever Hans effects, which may remain undetected. Such hidden flaws of the model can nevertheless be mitigated, and we demonstrate this by contributing a new method, Explanation-Guided Exposure Minimization (EGEM), that preemptively prunes variations in the ML model that have not been the subject of positive explanation feedback. Experiments demonstrate that our approach leads to models that strongly reduce their reliance on hidden Clever Hans strategies, and consequently achieve higher accuracy on new data.
Large language models (LLMs) have emerged as powerful and general solutions to many natural language tasks. However, many of the most important applications of language generation are interactive, where an agent has to talk to a person to reach a desired outcome. For example, a teacher might try to understand their student's current comprehension level to tailor their instruction accordingly, and a travel agent might ask questions of their customer to understand their preferences in order to recommend activities they might enjoy. LLMs trained with supervised fine-tuning or "single-step" RL, as with standard RLHF, might struggle which tasks that require such goal-directed behavior, since they are not trained to optimize for overall conversational outcomes after multiple turns of interaction. In this work, we explore a new method for adapting LLMs with RL for such goal-directed dialogue. Our key insight is that, though LLMs might not effectively solve goal-directed dialogue tasks out of the box, they can provide useful data for solving such tasks by simulating suboptimal but human-like behaviors. Given a textual description of a goal-directed dialogue task, we leverage LLMs to sample diverse synthetic rollouts of hypothetical in-domain human-human interactions. Our algorithm then utilizes this dataset with offline reinforcement learning to train an interactive conversational agent that can optimize goal-directed objectives over multiple turns. In effect, the LLM produces examples of possible interactions, and RL then processes these examples to learn to perform more optimal interactions. Empirically, we show that our proposed approach achieves state-of-the-art performance in various goal-directed dialogue tasks that include teaching and preference elicitation.
Recent research has demonstrated that large pre-trained language models reflect societal biases expressed in natural language. The present paper introduces a simple method for probing language models to conduct a multilingual study of gender bias towards politicians. We quantify the usage of adjectives and verbs generated by language models surrounding the names of politicians as a function of their gender. To this end, we curate a dataset of 250k politicians worldwide, including their names and gender. Our study is conducted in seven languages across six different language modeling architectures. The results demonstrate that pre-trained language models' stance towards politicians varies strongly across analyzed languages. We find that while some words such as dead, and designated are associated with both male and female politicians, a few specific words such as beautiful and divorced are predominantly associated with female politicians. Finally, and contrary to previous findings, our study suggests that larger language models do not tend to be significantly more gender-biased than smaller ones.
For a language model (LM) to faithfully model human language, it must compress vast, potentially infinite information into relatively few dimensions. We propose analyzing compression in (pre-trained) LMs from two points of view: geometric and information-theoretic. We demonstrate that the two views are highly correlated, such that the intrinsic geometric dimension of linguistic data predicts their coding length under the LM. We then show that, in turn, high compression of a linguistic dataset predicts rapid adaptation to that dataset, confirming that being able to compress linguistic information is an important part of successful LM performance. As a practical byproduct of our analysis, we evaluate a battery of intrinsic dimension estimators for the first time on linguistic data, showing that only some encapsulate the relationship between information-theoretic compression, geometric compression, and ease-of-adaptation.
Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.