亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Our study focuses on determining the best weight windows for a weighted moving average smoother under squared loss. We show that there exists an optimal weight window that is symmetrical around its center. We study the class of tapered weight windows, which decrease in weight as they move away from the center. We formulate the corresponding least squares problem as a quadratic program and finally as a projection of the origin onto a convex polytope. Additionally, we provide some analytical solutions to the best window when some conditions are met on the input data.

相關內容

We study the recovery of functions in the uniform norm based on function evaluations. We obtain worst case error bounds for general classes of functions, also in $L_p$-norm, in terms of the best $L_2$-approximation from a given nested sequence of subspaces combined with bounds on the the Christoffel function of these subspaces. Our results imply that linear sampling algorithms are optimal (up to constants) among all algorithms using arbitrary linear information for many reproducing kernel Hilbert spaces; a result that has been observed independently in [Geng \& Wang, arXiv:2304.14748].

The $k$-Opt heuristic is a simple improvement heuristic for the Traveling Salesman Problem. It starts with an arbitrary tour and then repeatedly replaces $k$ edges of the tour by $k$ other edges, as long as this yields a shorter tour. We will prove that for 2-dimensional Euclidean Traveling Salesman Problems with $n$ cities the approximation ratio of the $k$-Opt heuristic is $\Theta(\log n / \log \log n)$. This improves the upper bound of $O(\log n)$ given by Chandra, Karloff, and Tovey in 1999 and provides for the first time a non-trivial lower bound for the case $k\ge 3$. Our results not only hold for the Euclidean norm but extend to arbitrary $p$-norms with $1 \le p < \infty$.

When predicting future events, it is common to issue forecasts that are probabilistic, in the form of probability distributions over the range of possible outcomes. Such forecasts can be evaluated using proper scoring rules. Proper scoring rules condense forecast performance into a single numerical value, allowing competing forecasters to be ranked and compared. To facilitate the use of scoring rules in practical applications, the scoringRules package in R provides popular scoring rules for a wide range of forecast distributions. This paper discusses an extension to the scoringRules package that additionally permits the implementation of popular weighted scoring rules. Weighted scoring rules allow particular outcomes to be targeted during forecast evaluation, recognising that certain outcomes are often of more interest than others when assessing forecast quality. This introduces the potential for very flexible, user-oriented evaluation of probabilistic forecasts. We discuss the theory underlying weighted scoring rules, and describe how they can readily be implemented in practice using scoringRules. Functionality is available for weighted versions of several popular scoring rules, including the logarithmic score, the continuous ranked probability score (CRPS), and the energy score. Two case studies are presented to demonstrate this, whereby weighted scoring rules are applied to univariate and multivariate probabilistic forecasts in the fields of meteorology and economics.

The {\em binary deletion channel} with deletion probability $d$ ($\text{BDC}_d$) is a random channel that deletes each bit of the input message i.i.d with probability $d$. It has been studied extensively as a canonical example of a channel with synchronization errors. Perhaps the most important question regarding the BDC is determining its capacity. Mitzenmacher and Drinea (ITIT 2006) and Kirsch and Drinea (ITIT 2009) show a method by which distributions on run lengths can be converted to codes for the BDC, yielding a lower bound of $\mathcal{C}(\text{BDC}_d) > 0.1185 \cdot (1-d)$. Fertonani and Duman (ITIT 2010), Dalai (ISIT 2011) and Rahmati and Duman (ITIT 2014) use computer aided analyses based on the Blahut-Arimoto algorithm to prove an upper bound of $\mathcal{C}(\text{BDC}_d) < 0.4143\cdot(1-d)$ in the high deletion probability regime ($d > 0.65$). In this paper, we show that the Blahut-Arimoto algorithm can be implemented with a lower space complexity, allowing us to extend the upper bound analyses, and prove an upper bound of $\mathcal{C}(\text{BDC}_d) < 0.3745 \cdot(1-d)$ for all $d \geq 0.68$. Furthermore, we show that an extension of the Blahut-Arimoto algorithm can also be used to select better run length distributions for Mitzenmacher and Drinea's construction, yielding a lower bound of $\mathcal{C}(\text{BDC}_d) > 0.1221 \cdot (1 - d)$.

We consider a generalized collision channel model for general multi-user communication systems, an extension of Massey and Mathys' collision channel without feedback for multiple access communications. In our model, there are multiple transmitters and receivers sharing the same communication channel. The transmitters are not synchronized and arbitrary time offsets between transmitters and receivers are assumed. A ``collision" occurs if two or more packets from different transmitters partially or completely overlap at a receiver. Our model includes the original collision channel as a special case. This paper focuses on reliable throughputs that are approachable for arbitrary time offsets. We consider both slot-synchronized and non-synchronized cases and characterize their reliable throughput regions for the generalized collision channel model. These two regions are proven to coincide. Moreover, it is shown that the protocol sequences constructed for multiple access communication remain ``throughput optimal" in the generalized collision channel model. We also identify the protocol sequences that can approach the outer boundary of the reliable throughput region.

Various methods have been proposed to approximate a solution to the truncated Hausdorff moment problem. In this paper, we establish a method of comparison for the performance of the approximations. Three ways of producing random moment sequences are discussed and applied. Also, some of the approximations have been rewritten as linear transforms, and detailed accuracy requirements are analyzed. Our finding shows that the performance of the approximations differs significantly in their convergence properties, accuracy, and numerical complexity and that the decay type of the moment sequence strongly affects the accuracy requirement.

Given a matrix $A$ and vector $b$ with polynomial entries in $d$ real variables $\delta=(\delta_1,\ldots,\delta_d)$ we consider the following notion of feasibility: the pair $(A,b)$ is locally feasible if there exists an open neighborhood $U$ of $0$ such that for every $\delta\in U$ there exists $x$ satisfying $A(\delta)x\ge b(\delta)$ entry-wise. For $d=1$ we construct a polynomial time algorithm for deciding local feasibility. For $d \ge 2$ we show local feasibility is NP-hard. This also gives the first polynomial-time algorithm for the asymptotic linear program problem introduced by Jeroslow in 1973. As an application (which was the primary motivation for this work) we give a computer-assisted proof of ergodicity of the following elementary 1D cellular automaton: given the current state $\eta_t \in \{0,1\}^{\mathbb{Z}}$ the next state $\eta_{t+1}(n)$ at each vertex $n\in \mathbb{Z}$ is obtained by $\eta_{t+1}(n)= \text{NAND}\big(\text{BSC}_\delta(\eta_t(n-1)), \text{BSC}_\delta(\eta_t(n))\big)$. Here the binary symmetric channel $\text{BSC}_\delta$ takes a bit as input and flips it with probability $\delta$ (and leaves it unchanged with probability $1-\delta$). It is shown that there exists $\delta_0>0$ such that for all $0<\delta<\delta_0$ the distribution of $\eta_t$ converges to a unique stationary measure irrespective of the initial condition $\eta_0$. We also consider the problem of broadcasting information on the 2D-grid of noisy binary-symmetric channels $\text{BSC}_\delta$, where each node may apply an arbitrary processing function to its input bits. We prove that there exists $\delta_0'>0$ such that for all noise levels $0<\delta<\delta_0'$ it is impossible to broadcast information for any processing function, as conjectured by Makur, Mossel and Polyanskiy.

We formulate a uniform tail bound for empirical processes indexed by a class of functions, in terms of the individual deviations of the functions rather than the worst-case deviation in the considered class. The tail bound is established by introducing an initial "deflation" step to the standard generic chaining argument. The resulting tail bound has a main complexity component, a variant of Talagrand's $\gamma$ functional for the deflated function class, as well as an instance-dependent deviation term, measured by an appropriately scaled version of a suitable norm. Both of these terms are expressed using certain coefficients formulated based on the relevant cumulant generating functions. We also provide more explicit approximations for the mentioned coefficients, when the function class lies in a given (exponential type) Orlicz space.

Minimum flow decomposition (MFD) is the NP-hard problem of finding a smallest decomposition of a network flow/circulation $X$ on a directed graph $G$ into weighted source-to-sink paths whose superposition equals $X$. We show that, for acyclic graphs, considering the \emph{width} of the graph (the minimum number of paths needed to cover all of its edges) yields advances in our understanding of its approximability. For the version of the problem that uses only non-negative weights, we identify and characterise a new class of \emph{width-stable} graphs, for which a popular heuristic is a \gwsimple-approximation ($|X|$ being the total flow of $X$), and strengthen its worst-case approximation ratio from $\Omega(\sqrt{m})$ to $\Omega(m / \log m)$ for sparse graphs, where $m$ is the number of edges in the graph. We also study a new problem on graphs with cycles, Minimum Cost Circulation Decomposition (MCCD), and show that it generalises MFD through a simple reduction. For the version allowing also negative weights, we give a $(\lceil \log \Vert X \Vert \rceil +1)$-approximation ($\Vert X \Vert$ being the maximum absolute value of $X$ on any edge) using a power-of-two approach, combined with parity fixing arguments and a decomposition of unitary circulations ($\Vert X \Vert \leq 1$), using a generalised notion of width for this problem. Finally, we disprove a conjecture about the linear independence of minimum (non-negative) flow decompositions posed by Kloster et al. [ALENEX 2018], but show that its useful implication (polynomial-time assignments of weights to a given set of paths to decompose a flow) holds for the negative version.

When estimating quantities and fields that are difficult to measure directly, such as the fluidity of ice, from point data sources, such as satellite altimetry, it is important to solve a numerical inverse problem that is formulated with Bayesian consistency. Otherwise, the resultant probability density function for the difficult to measure quantity or field will not be appropriately clustered around the truth. In particular, the inverse problem should be formulated by evaluating the numerical solution at the true point locations for direct comparison with the point data source. If the data are first fitted to a gridded or meshed field on the computational grid or mesh, and the inverse problem formulated by comparing the numerical solution to the fitted field, the benefits of additional point data values below the grid density will be lost. We demonstrate, with examples in the fields of groundwater hydrology and glaciology, that a consistent formulation can increase the accuracy of results and aid discourse between modellers and observationalists. To do this, we bring point data into the finite element method ecosystem as discontinuous fields on meshes of disconnected vertices. Point evaluation can then be formulated as a finite element interpolation operation (dual-evaluation). This new abstraction is well-suited to automation, including automatic differentiation. We demonstrate this through implementation in Firedrake, which generates highly optimised code for solving PDEs with the finite element method. Our solution integrates with dolfin-adjoint/pyadjoint, allowing PDE-constrained optimisation problems, such as data assimilation, to be solved through forward and adjoint mode automatic differentiation.

北京阿比特科技有限公司