亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Dental simulators gained prevalence in recent years. Important aspects distinguishing VR hardware configurations are 3D stereoscopic rendering and visual alignment of the user's hands with the virtual tools. New dental simulators are often evaluated without analysing the impact of these simulation aspects. In this paper, we seek to determine the impact of 3D stereoscopic rendering and of hand-tool alignment on the teaching effectiveness and skill assessment accuracy of a VR dental simulator. We developed a bimanual simulator using an HMD and two haptic devices that provides an immersive environment with both 3D stereoscopic rendering and hand-tool alignment. We then independently controlled for each of the two aspects of the simulation. We trained four groups of students in root canal access opening using the simulator and measured the virtual and real learning gains. We quantified the real learning gains by pre- and post-testing using realistic plastic teeth and the virtual learning gains by scoring the training outcomes inside the simulator. We developed a scoring metric to automatically score the training outcomes that strongly correlates with experts' scoring of those outcomes. We found that hand-tool alignment has a positive impact on virtual and real learning gains, and improves the accuracy of skill assessment. We found that stereoscopic 3D had a negative impact on virtual and real learning gains, however it improves the accuracy of skill assessment. This finding is counter-intuitive, and we found eye-tooth distance to be a confounding variable of stereoscopic 3D, as it was significantly lower for the monoscopic 3D condition and negatively correlates with real learning gain. The results of our study provide valuable information for the future design of dental simulators, as well as simulators for other high-precision psycho-motor tasks.

相關內容

To form precipitation datasets that are accurate and, at the same time, have high spatial densities, data from satellites and gauges are often merged in the literature. However, uncertainty estimates for the data acquired in this manner are scarcely provided, although the importance of uncertainty quantification in predictive modelling is widely recognized. Furthermore, the benefits that machine learning can bring to the task of providing such estimates have not been broadly realized and properly explored through benchmark experiments. The present study aims at filling in this specific gap by conducting the first benchmark tests on the topic. On a large dataset that comprises 15-year-long monthly data spanning across the contiguous United States, we extensively compared six learners that are, by their construction, appropriate for predictive uncertainty quantification. These are the quantile regression (QR), quantile regression forests (QRF), generalized random forests (GRF), gradient boosting machines (GBM), light gradient boosting machines (LightGBM) and quantile regression neural networks (QRNN). The comparison referred to the competence of the learners in issuing predictive quantiles at nine levels that facilitate a good approximation of the entire predictive probability distribution, and was primarily based on the quantile and continuous ranked probability skill scores. Three types of predictor variables (i.e., satellite precipitation variables, distances between a point of interest and satellite grid points, and elevation at a point of interest) were used in the comparison and were additionally compared with each other. This additional comparison was based on the explainable machine learning concept of feature importance. The results suggest that the order from the best to the worst of the learners for the task investigated is the following: LightGBM, QRF, GRF, GBM, QRNN and QR...

The locality of solution features in cardiac electrophysiology simulations calls for adaptive methods. Due to the overhead incurred by established mesh refinement and coarsening, however, such approaches failed in accelerating the computations. Here we investigate a different route to spatial adaptivity that is based on nested subset selection for algebraic degrees of freedom in spectral deferred correction methods. This combination of algebraic adaptivity and iterative solvers for higher order collocation time stepping realizes a multirate integration with minimal overhead. This leads to moderate but significant speedups in both monodomain and cell-by-cell models of cardiac excitation, as demonstrated at four numerical examples.

For years, SIMD/vector units have enhanced the capabilities of modern CPUs in High-Performance Computing (HPC) and mobile technology. Typical commercially-available SIMD units process up to 8 double-precision elements with one instruction. The optimal vector width and its impact on CPU throughput due to memory latency and bandwidth remain challenging research areas. This study examines the behavior of four computational kernels on a RISC-V core connected to a customizable vector unit, capable of operating up to 256 double precision elements per instruction. The four codes have been purposefully selected to represent non-dense workloads: SpMV, BFS, PageRank, FFT. The experimental setup allows us to measure their performance while varying the vector length, the memory latency, and bandwidth. Our results not only show that larger vector lengths allow for better tolerance of limitations in the memory subsystem but also offer hope to code developers beyond dense linear algebra.

Nowadays, deep-learning image coding solutions have shown similar or better compression efficiency than conventional solutions based on hand-crafted transforms and spatial prediction techniques. These deep-learning codecs require a large training set of images and a training methodology to obtain a suitable model (set of parameters) for efficient compression. The training is performed with an optimization algorithm which provides a way to minimize the loss function. Therefore, the loss function plays a key role in the overall performance and includes a differentiable quality metric that attempts to mimic human perception. The main objective of this paper is to study the perceptual impact of several image quality metrics that can be used in the loss function of the training process, through a crowdsourcing subjective image quality assessment study. From this study, it is possible to conclude that the choice of the quality metric is critical for the perceptual performance of the deep-learning codec and that can vary depending on the image content.

Learning tasks play an increasingly prominent role in quantum information and computation. They range from fundamental problems such as state discrimination and metrology over the framework of quantum probably approximately correct (PAC) learning, to the recently proposed shadow variants of state tomography. However, the many directions of quantum learning theory have so far evolved separately. We propose a general mathematical formalism for describing quantum learning by training on classical-quantum data and then testing how well the learned hypothesis generalizes to new data. In this framework, we prove bounds on the expected generalization error of a quantum learner in terms of classical and quantum information-theoretic quantities measuring how strongly the learner's hypothesis depends on the specific data seen during training. To achieve this, we use tools from quantum optimal transport and quantum concentration inequalities to establish non-commutative versions of decoupling lemmas that underlie recent information-theoretic generalization bounds for classical machine learning. Our framework encompasses and gives intuitively accessible generalization bounds for a variety of quantum learning scenarios such as quantum state discrimination, PAC learning quantum states, quantum parameter estimation, and quantumly PAC learning classical functions. Thereby, our work lays a foundation for a unifying quantum information-theoretic perspective on quantum learning.

Bayesian inference and kernel methods are well established in machine learning. The neural network Gaussian process in particular provides a concept to investigate neural networks in the limit of infinitely wide hidden layers by using kernel and inference methods. Here we build upon this limit and provide a field-theoretic formalism which covers the generalization properties of infinitely wide networks. We systematically compute generalization properties of linear, non-linear, and deep non-linear networks for kernel matrices with heterogeneous entries. In contrast to currently employed spectral methods we derive the generalization properties from the statistical properties of the input, elucidating the interplay of input dimensionality, size of the training data set, and variability of the data. We show that data variability leads to a non-Gaussian action reminiscent of a ($\varphi^3+\varphi^4$)-theory. Using our formalism on a synthetic task and on MNIST we obtain a homogeneous kernel matrix approximation for the learning curve as well as corrections due to data variability which allow the estimation of the generalization properties and exact results for the bounds of the learning curves in the case of infinitely many training data points.

When systems use data-based models that are based on machine learning (ML), errors in their results cannot be ruled out. This is particularly critical if it remains unclear to the user how these models arrived at their decisions and if errors can have safety-relevant consequences, as is often the case in the medical field. In such cases, the use of dependable methods to quantify the uncertainty remaining in a result allows the user to make an informed decision about further usage and draw possible conclusions based on a given result. This paper demonstrates the applicability and practical utility of the Uncertainty Wrapper using flow cytometry as an application from the medical field that can benefit from the use of ML models in conjunction with dependable and transparent uncertainty quantification.

The expanding hardware diversity in high performance computing adds enormous complexity to scientific software development. Developers who aim to write maintainable software have two options: 1) To use a so-called data locality abstraction that handles portability internally, thereby, performance-productivity becomes a trade off. Such abstractions usually come in the form of libraries, domain-specific languages, and run-time systems. 2) To use generic programming where performance, productivity and portability are subject to software design. In the direction of the second, this work describes a design approach that allows the integration of low-level and verbose programming tools into high-level generic algorithms based on template meta-programming in C++. This enables the development of performance-portable applications targeting host-device computer architectures, such as CPUs and GPUs. With a suitable design in place, the extensibility of generic algorithms to new hardware becomes a well defined procedure that can be developed in isolation from other parts of the code. That allows scientific software to be maintainable and efficient in a period of diversifying hardware in HPC. As proof of concept, a finite-difference modelling algorithm for the acoustic wave equation is developed and benchmarked using roofline model analysis on Intel Xeon Gold 6248 CPU, Nvidia Tesla V100 GPU, and AMD MI100 GPU.

Automatic Speech Recognition (ASR) systems have progressed significantly in their performance on adult speech data; however, transcribing child speech remains challenging due to the acoustic differences in the characteristics of child and adult voices. This work aims to explore the potential of adapting state-of-the-art Conformer-transducer models to child speech to improve child speech recognition performance. Furthermore, the results are compared with those of self-supervised wav2vec2 models and semi-supervised multi-domain Whisper models that were previously finetuned on the same data. We demonstrate that finetuning Conformer-transducer models on child speech yields significant improvements in ASR performance on child speech, compared to the non-finetuned models. We also show Whisper and wav2vec2 adaptation on different child speech datasets. Our detailed comparative analysis shows that wav2vec2 provides the most consistent performance improvements among the three methods studied.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

北京阿比特科技有限公司