In the committee selection problem, the goal is to choose a subset of size $k$ from a set of candidates $C$ that collectively gives the best representation to a set of voters. We consider this problem in Euclidean $d$-space where each voter/candidate is a point and voters' preferences are implicitly represented by Euclidean distances to candidates. We explore fault-tolerance in committee selection and study the following three variants: (1) given a committee and a set of $f$ failing candidates, find their optimal replacement; (2) compute the worst-case replacement score for a given committee under failure of $f$ candidates; and (3) design a committee with the best replacement score under worst-case failures. The score of a committee is determined using the well-known (min-max) Chamberlin-Courant rule: minimize the maximum distance between any voter and its closest candidate in the committee. Our main results include the following: (1) in one dimension, all three problems can be solved in polynomial time; (2) in dimension $d \geq 2$, all three problems are NP-hard; and (3) all three problems admit a constant-factor approximation in any fixed dimension, and the optimal committee problem has an FPT bicriterion approximation.
We demonstrate possibility for consensus under the model and conditions used by Fischer, Lynch, and Patterson (FLP) to prove impossibility of binary consensus - in complete asynchrony and up to one unannounced process crash-fail. We also show that: i) assembling by every process a dataset containing the initial values of individual processes is an inevitable phase of binary consensus; and ii) agreeing on this dataset is sufficient for a quasi-binary consensus. Key findings: Direct causal relationship between complete asynchrony and the impossibility to solve consensus does not exist. The impossibility to solve consensus is caused only and entirely by the dependence of agreement on the content of the initial values.
A locked $t$-omino tiling is a grid tiling by $t$-ominoes such that, if you remove any pair of tiles, the only way to fill in the remaining space with $t$-ominoes is to use the same two tiles in the exact same configuration as before. We exclude degenerate cases where there is only one tiling overall due to small dimensions. Locked $t$-omino tilings arise as obstructions to widely used political redistricting algorithms in a grid model of redistricting. It is a classic (and straightforward) result that finite grids do not admit locked 2-omino tilings. In this paper, we construct explicit locked 3-, 4-, and 5-omino tilings of grids of various sizes. While 3-omino tilings are plentiful, 4- and 5-omino tilings are remarkably elusive. Using an exhaustive computational search, we completely enumerate all locked tilings on grid sizes up to $20 \times 20$, and all symmetric locked tilings on grid sizes up to $35 \times 35$. We find only a single 4-omino tiling (on the $10 \times 10$ grid) and a small handful of 5-omino tilings (only on $20 \times 20$ grids and larger). Finally, we construct a family of infinite periodic locked $t$-omino tilings with unbounded $t$ for both square and triangular grid lattices.
We propose an efficient $\epsilon$-differentially private algorithm, that given a simple {\em weighted} $n$-vertex, $m$-edge graph $G$ with a \emph{maximum unweighted} degree $\Delta(G) \leq n-1$, outputs a synthetic graph which approximates the spectrum with $\widetilde{O}(\min\{\Delta(G), \sqrt{n}\})$ bound on the purely additive error. To the best of our knowledge, this is the first $\epsilon$-differentially private algorithm with a non-trivial additive error for approximating the spectrum of the graph. One of the subroutines of our algorithm also precisely simulates the exponential mechanism over a non-convex set, which could be of independent interest given the recent interest in sampling from a {\em log-concave distribution} defined over a convex set. Spectral approximation also allows us to approximate all possible $(S,T)$-cuts, but it incurs an error that depends on the maximum degree, $\Delta(G)$. We further show that using our sampler, we can also output a synthetic graph that approximates the sizes of all $(S,T)$-cuts on $n$ vertices weighted graph $G$ with $m$ edges while preserving $(\epsilon,\delta)$-differential privacy and an additive error of $\widetilde{O}(\sqrt{mn}/\epsilon)$. We also give a matching lower bound (with respect to all the parameters) on the private cut approximation for weighted graphs. This removes the gap of $\sqrt{W_{\mathsf{avg}}}$ in the upper and lower bound in Eli{\'a}{\v{s}}, Kapralov, Kulkarni, and Lee (SODA 2020), where $W_{\mathsf{avg}}$ is the average edge weight.
Given a set of $n$ point robots inside a simple polygon $P$, the task is to move the robots from their starting positions to their target positions along their shortest paths, while the mutual visibility of these robots is preserved. Previous work only considered two robots. In this paper, we present an $O(mn)$ time algorithm, where $m$ is the complexity of the polygon, when all the starting positions lie on a line segment $S$, all the target positions lie on a line segment $T$, and $S$ and $T$ do not intersect. We also argue that there is no polynomial-time algorithm, whose running time depends only on $n$ and $m$, that uses a single strategy for the case where $S$ and $T$ intersect.
In this paper we study the problem of minimizing a submodular function $f : 2^V \rightarrow \mathbb{R}$ that is guaranteed to have a $k$-sparse minimizer. We give a deterministic algorithm that computes an additive $\epsilon$-approximate minimizer of such $f$ in $\widetilde{O}(\mathsf{poly}(k) \log(|f|/\epsilon))$ parallel depth using a polynomial number of queries to an evaluation oracle of $f$, where $|f| = \max_{S \subseteq V} |f(S)|$. Further, we give a randomized algorithm that computes an exact minimizer of $f$ with high probability using $\widetilde{O}(|V| \cdot \mathsf{poly}(k))$ queries and polynomial time. When $k = \widetilde{O}(1)$, our algorithms use either nearly-constant parallel depth or a nearly-linear number of evaluation oracle queries. All previous algorithms for this problem either use $\Omega(|V|)$ parallel depth or $\Omega(|V|^2)$ queries. In contrast to state-of-the-art weakly-polynomial and strongly-polynomial time algorithms for SFM, our algorithms use first-order optimization methods, e.g., mirror descent and follow the regularized leader. We introduce what we call {\em sparse dual certificates}, which encode information on the structure of sparse minimizers, and both our parallel and sequential algorithms provide new algorithmic tools for allowing first-order optimization methods to efficiently compute them. Correspondingly, our algorithm does not invoke fast matrix multiplication or general linear system solvers and in this sense is more combinatorial than previous state-of-the-art methods.
It is shown in this note that approximating the number of independent sets in a $k$-uniform linear hypergraph with maximum degree at most $\Delta$ is NP-hard if $\Delta\geq 5\cdot 2^{k-1}+1$. This confirms that for the relevant sampling and approximate counting problems, the regimes on the maximum degree where the state-of-the-art algorithms work are tight, up to some small factors. These algorithms include: the approximate sampler and randomised approximation scheme by Hermon, Sly and Zhang (RSA, 2019), the perfect sampler by Qiu, Wang and Zhang (ICALP, 2022), and the deterministic approximation scheme by Feng, Guo, Wang, Wang and Yin (FOCS, 2023).
We study the problem of cutting a length-$n$ string of positive real numbers into $k$ pieces so that every piece has sum at least $b$. The problem can also be phrased as transforming such a string into a new one by merging adjacent numbers. We discuss connections with other problems and present several algorithms in connection with the problem: an $O(n)$-time greedy algorithm, an $O(kn\log n)$-time dynamic programming algorithm, and an $O(n+ k \log n + 2^kk)$-time FPT algorithm for $n-k$ pieces.
We study unconstrained Online Linear Optimization with Lipschitz losses. The goal is to simultaneously achieve ($i$) second order gradient adaptivity; and ($ii$) comparator norm adaptivity also known as "parameter freeness" in the literature. Existing regret bounds (Cutkosky and Orabona, 2018; Mhammedi and Koolen, 2020; Jacobsen and Cutkosky, 2022) have the suboptimal $O(\sqrt{V_T\log V_T})$ dependence on the gradient variance $V_T$, while the present work improves it to the optimal rate $O(\sqrt{V_T})$ using a novel continuous-time-inspired algorithm, without any impractical doubling trick. This result can be extended to the setting with unknown Lipschitz constant, eliminating the range ratio problem from prior works (Mhammedi and Koolen, 2020). Concretely, we first show that the aimed simultaneous adaptivity can be achieved fairly easily in a continuous time analogue of the problem, where the environment is modeled by an arbitrary continuous semimartingale. Then, our key innovation is a new discretization argument that preserves such adaptivity in the discrete time adversarial setting. This refines a non-gradient-adaptive discretization argument from (Harvey et al., 2023), both algorithmically and analytically, which could be of independent interest.
A combinatorial problem concerning the maximum size of the (hamming) weight set of an $[n,k]_q$ linear code was recently introduced. Codes attaining the established upper bound are the Maximum Weight Spectrum (MWS) codes. Those $[n,k]_q $ codes with the same weight set as $ \mathbb{F}_q^n $ are called Full Weight Spectrum (FWS) codes. FWS codes are necessarily ``short", whereas MWS codes are necessarily ``long". For fixed $ k,q $ the values of $ n $ for which an $ [n,k]_q $-FWS code exists are completely determined, but the determination of the minimum length $ M(H,k,q) $ of an $ [n,k]_q $-MWS code remains an open problem. The current work broadens discussion first to general coordinate-wise weight functions, and then specifically to the Lee weight and a Manhattan like weight. In the general case we provide bounds on $ n $ for which an FWS code exists, and bounds on $ n $ for which an MWS code exists. When specializing to the Lee or to the Manhattan setting we are able to completely determine the parameters of FWS codes. As with the Hamming case, we are able to provide an upper bound on $ M(\mathcal{L},k,q) $ (the minimum length of Lee MWS codes), and pose the determination of $ M(\mathcal{L},k,q) $ as an open problem. On the other hand, with respect to the Manhattan weight we completely determine the parameters of MWS codes.
We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.