亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The datasets of most image quality assessment studies contain ratings on a categorical scale with five levels, from bad (1) to excellent (5). For each stimulus, the number of ratings from 1 to 5 is summarized and given in the form of the mean opinion score. In this study, we investigate families of multinomial probability distributions parameterized by mean and variance that are used to fit the empirical rating distributions. To this end, we consider quantized metric models based on continuous distributions that model perceived stimulus quality on a latent scale. The probabilities for the rating categories are determined by quantizing the corresponding random variables using threshold values. Furthermore, we introduce a novel discrete maximum entropy distribution for a given mean and variance. We compare the performance of these models and the state of the art given by the generalized score distribution for two large data sets, KonIQ-10k and VQEG HDTV. Given an input distribution of ratings, our fitted two-parameter models predict unseen ratings better than the empirical distribution. In contrast to empirical ACR distributions and their discrete models, our continuous models can provide fine-grained estimates of quantiles of quality of experience that are relevant to service providers to satisfy a target fraction of the user population.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · · 數據集 · 穩健性 · 統計量 ·
2024 年 11 月 9 日

In the field of big data analytics, the search for efficient subdata selection methods that enable robust statistical inferences with minimal computational resources is of high importance. A procedure prior to subdata selection could perform variable selection, as only a subset of a large number of variables is active. We propose an approach when both the size of the full dataset and the number of variables are large. This approach firstly identifies the active variables by applying a procedure inspired by random LASSO (Least Absolute Shrinkage and Selection Operator) and then selects subdata based on leverage scores to build a predictive model. Our proposed approach outperforms approaches that already exists in the current literature, including the usage of the full dataset, in both variable selection and prediction, while also exhibiting significant improvements in computing time. Simulation experiments as well as a real data application are provided.

In this paper, we investigate score function-based tests to check the significance of an ultrahigh-dimensional sub-vector of the model coefficients when the nuisance parameter vector is also ultrahigh-dimensional in linear models. We first reanalyze and extend a recently proposed score function-based test to derive, under weaker conditions, its limiting distributions under the null and local alternative hypotheses. As it may fail to work when the correlation between testing covariates and nuisance covariates is high, we propose an orthogonalized score function-based test with two merits: debiasing to make the non-degenerate error term degenerate and reducing the asymptotic variance to enhance power performance. Simulations evaluate the finite-sample performances of the proposed tests, and a real data analysis illustrates its application.

In practice, non-destructive testing (NDT) procedures tend to consider experiments (and their respective models) as distinct, conducted in isolation and associated with independent data. In contrast, this work looks to capture the interdependencies between acoustic emission (AE) experiments (as meta-models) and then use the resulting functions to predict the model hyperparameters for previously unobserved systems. We utilise a Bayesian multilevel approach (similar to deep Gaussian Processes) where a higher level meta-model captures the inter-task relationships. Our key contribution is how knowledge of the experimental campaign can be encoded between tasks as well as within tasks. We present an example of AE time-of-arrival mapping for source localisation, to illustrate how multilevel models naturally lend themselves to representing aggregate systems in engineering. We constrain the meta-model based on domain knowledge, then use the inter-task functions for transfer learning, predicting hyperparameters for models of previously unobserved experiments (for a specific design).

The accurate alignment of 3D woodblock geometrical models with 2D orthographic projection images presents a significant challenge in the digital preservation of Vietnamese cultural heritage. This paper proposes a unified image processing algorithm to address this issue, enhancing the registration quality between 3D woodblock models and their 2D representations. The method includes determining the plane of the 3D character model, establishing a transformation matrix to align this plane with the 2D printed image plane, and creating a parallel-projected depth map for precise alignment. This process minimizes disocclusions and ensures that character shapes and strokes are correctly positioned. Experimental results highlight the importance of structure-based comparisons to optimize alignment for large-scale Han-Nom character datasets. The proposed approach, combining density-based and structure-based methods, demonstrates improved registration performance, offering an effective normalization scheme for digital heritage preservation.

For image generation with diffusion models (DMs), a negative prompt n can be used to complement the text prompt p, helping define properties not desired in the synthesized image. While this improves prompt adherence and image quality, finding good negative prompts is challenging. We argue that this is due to a semantic gap between humans and DMs, which makes good negative prompts for DMs appear unintuitive to humans. To bridge this gap, we propose a new diffusion-negative prompting (DNP) strategy. DNP is based on a new procedure to sample images that are least compliant with p under the distribution of the DM, denoted as diffusion-negative sampling (DNS). Given p, one such image is sampled, which is then translated into natural language by the user or a captioning model, to produce the negative prompt n*. The pair (p, n*) is finally used to prompt the DM. DNS is straightforward to implement and requires no training. Experiments and human evaluations show that DNP performs well both quantitatively and qualitatively and can be easily combined with several DM variants.

The unpredictability of random numbers is fundamental to both digital security and applications that fairly distribute resources. However, existing random number generators have limitations-the generation processes cannot be fully traced, audited, and certified to be unpredictable. The algorithmic steps used in pseudorandom number generators are auditable, but they cannot guarantee that their outputs were a priori unpredictable given knowledge of the initial seed. Device-independent quantum random number generators can ensure that the source of randomness was unknown beforehand, but the steps used to extract the randomness are vulnerable to tampering. Here, for the first time, we demonstrate a fully traceable random number generation protocol based on device-independent techniques. Our protocol extracts randomness from unpredictable non-local quantum correlations, and uses distributed intertwined hash chains to cryptographically trace and verify the extraction process. This protocol is at the heart of a public traceable and certifiable quantum randomness beacon that we have launched. Over the first 40 days of operation, we completed the protocol 7434 out of 7454 attempts -- a success rate of 99.7%. Each time the protocol succeeded, the beacon emitted a pulse of 512 bits of traceable randomness. The bits are certified to be uniform with error times actual success probability bounded by $2^{-64}$. The generation of certifiable and traceable randomness represents one of the first public services that operates with an entanglement-derived advantage over comparable classical approaches.

In decision-making, maxitive functions are used for worst-case and best-case evaluations. Maxitivity gives rise to a rich structure that is well-studied in the context of the pointwise order. In this article, we investigate maxitivity with respect to general preorders and provide a representation theorem for such functionals. The results are illustrated for different stochastic orders in the literature, including the usual stochastic order, the increasing convex/concave order, and the dispersive order.

In the present work, strong approximation errors are analyzed for both the spatial semi-discretization and the spatio-temporal fully discretization of stochastic wave equations (SWEs) with cubic polynomial nonlinearities and additive noises. The fully discretization is achieved by the standard Galerkin ffnite element method in space and a novel exponential time integrator combined with the averaged vector ffeld approach. The newly proposed scheme is proved to exactly satisfy a trace formula based on an energy functional. Recovering the convergence rates of the scheme, however, meets essential difffculties, due to the lack of the global monotonicity condition. To overcome this issue, we derive the exponential integrability property of the considered numerical approximations, by the energy functional. Armed with these properties, we obtain the strong convergence rates of the approximations in both spatial and temporal direction. Finally, numerical results are presented to verify the previously theoretical findings.

Graph neural networks (GNNs) provide state-of-the-art results in a wide variety of tasks which typically involve predicting features at the vertices of a graph. They are built from layers of graph convolutions which serve as a powerful inductive bias for describing the flow of information among the vertices. Often, more than one data modality is available. This work considers a setting in which several graphs have the same vertex set and a common vertex-level learning task. This generalizes standard GNN models to GNNs with several graph operators that do not commute. We may call this model graph-tuple neural networks (GtNN). In this work, we develop the mathematical theory to address the stability and transferability of GtNNs using properties of non-commuting non-expansive operators. We develop a limit theory of graphon-tuple neural networks and use it to prove a universal transferability theorem that guarantees that all graph-tuple neural networks are transferable on convergent graph-tuple sequences. In particular, there is no non-transferable energy under the convergence we consider here. Our theoretical results extend well-known transferability theorems for GNNs to the case of several simultaneous graphs (GtNNs) and provide a strict improvement on what is currently known even in the GNN case. We illustrate our theoretical results with simple experiments on synthetic and real-world data. To this end, we derive a training procedure that provably enforces the stability of the resulting model.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

北京阿比特科技有限公司