亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Artificial intelligence (AI) algorithms based on neural networks have been designed for decades with the goal of maximising some measure of accuracy. This has led to two undesired effects. First, model complexity has risen exponentially when measured in terms of computation and memory requirements. Second, state-of-the-art AI models are largely incapable of providing trustworthy measures of their uncertainty, possibly `hallucinating' their answers and discouraging their adoption for decision-making in sensitive applications. With the goal of realising efficient and trustworthy AI, in this paper we highlight research directions at the intersection of hardware and software design that integrate physical insights into computational substrates, neuroscientific principles concerning efficient information processing, information-theoretic results on optimal uncertainty quantification, and communication-theoretic guidelines for distributed processing. Overall, the paper advocates for novel design methodologies that target not only accuracy but also uncertainty quantification, while leveraging emerging computing hardware architectures that move beyond the traditional von Neumann digital computing paradigm to embrace in-memory, neuromorphic, and quantum computing technologies. An important overarching principle of the proposed approach is to view the stochasticity inherent in the computational substrate and in the communication channels between processors as a resource to be leveraged for the purpose of representing and processing classical and quantum uncertainty.

相關內容

迄今為止,產品設計師最友好的交互動畫軟件。

Iterative approximation methods using backpropagation enable the optimization of neural networks, but they remain computationally expensive, especially when used at scale. This paper presents an efficient alternative for optimizing neural networks that reduces the costs of scaling neural networks and provides high-efficiency optimizations for low-resource applications. We will discuss a general result about feed-forward neural networks and then extend this solution to compositional (mult-layer) networks, which are applied to a simplified transformer block containing feed-forward and self-attention layers. These models are used to train highly-specified and complex multi-layer neural architectures that we refer to as self-attentive feed-forward unit (SAFFU) layers, which we use to develop a transformer that appears to generalize well over small, cognitively-feasible, volumes of data. Testing demonstrates explicit solutions outperform models optimized by backpropagation alone. Moreover, further application of backpropagation after explicit solutions leads to better optima from smaller scales of data, training effective models from much less data is enabled by explicit solution warm starts. We then carry out ablation experiments training a roadmap of about 250 transformer models over 1-million tokens to determine ideal settings. We find that multiple different architectural variants produce highly-performant models, and discover from this ablation that some of the best are not the most parameterized. This appears to indicate well-generalized models could be reached using less data by using explicit solutions, and that architectural exploration using explicit solutions pays dividends in guiding the search for efficient variants with fewer parameters, and which could be incorporated into low-resource hardware where AI might be embodied.

Plug-and-Play (PnP) methods are a class of efficient iterative methods that aim to combine data fidelity terms and deep denoisers using classical optimization algorithms, such as ISTA or ADMM, with applications in inverse problems and imaging. Provable PnP methods are a subclass of PnP methods with convergence guarantees, such as fixed point convergence or convergence to critical points of some energy function. Many existing provable PnP methods impose heavy restrictions on the denoiser or fidelity function, such as non-expansiveness or strict convexity, respectively. In this work, we propose a novel algorithmic approach incorporating quasi-Newton steps into a provable PnP framework based on proximal denoisers, resulting in greatly accelerated convergence while retaining light assumptions on the denoiser. By characterizing the denoiser as the proximal operator of a weakly convex function, we show that the fixed points of the proposed quasi-Newton PnP algorithm are critical points of a weakly convex function. Numerical experiments on image deblurring and super-resolution demonstrate 2--8x faster convergence as compared to other provable PnP methods with similar reconstruction quality.

The symmetry and geometry of input data are considered to be encoded in the internal data representation inside the neural network, but the specific encoding rule has been less investigated. In this study, we present a systematic method to induce a generalized neural network and its right inverse operator, called the ridgelet transform, from a joint group invariant function on the data-parameter domain. Since the ridgelet transform is an inverse, (1) it can describe the arrangement of parameters for the network to represent a target function, which is understood as the encoding rule, and (2) it implies the universality of the network. Based on the group representation theory, we present a new simple proof of the universality by using Schur's lemma in a unified manner covering a wide class of networks, for example, the original ridgelet transform, formal deep networks, and the dual voice transform. Since traditional universality theorems were demonstrated based on functional analysis, this study sheds light on the group theoretic aspect of the approximation theory, connecting geometric deep learning to abstract harmonic analysis.

This paper introduces a new approach to address the issue of class imbalance in graph neural networks (GNNs) for learning on graph-structured data. Our approach integrates imbalanced node classification and Bias-Variance Decomposition, establishing a theoretical framework that closely relates data imbalance to model variance. We also leverage graph augmentation technique to estimate the variance, and design a regularization term to alleviate the impact of imbalance. Exhaustive tests are conducted on multiple benchmarks, including naturally imbalanced datasets and public-split class-imbalanced datasets, demonstrating that our approach outperforms state-of-the-art methods in various imbalanced scenarios. This work provides a novel theoretical perspective for addressing the problem of imbalanced node classification in GNNs.

To facilitate efficient learning, policy gradient approaches to deep reinforcement learning (RL) are typically paired with variance reduction measures and strategies for making large but safe policy changes based on a batch of experiences. Natural policy gradient methods, including Trust Region Policy Optimization (TRPO), seek to produce monotonic improvement through bounded changes in policy outputs. Proximal Policy Optimization (PPO) is a commonly used, first-order algorithm that instead uses loss clipping to take multiple safe optimization steps per batch of data, replacing the bound on the single step of TRPO with regularization on multiple steps. In this work, we find that the performance of PPO, when applied to continuous action spaces, may be consistently improved through a simple change in objective. Instead of the importance sampling objective of PPO, we instead recommend a basic policy gradient, clipped in an equivalent fashion. While both objectives produce biased gradient estimates with respect to the RL objective, they also both display significantly reduced variance compared to the unbiased off-policy policy gradient. Additionally, we show that (1) the clipped-objective policy gradient (COPG) objective is on average "pessimistic" compared to both the PPO objective and (2) this pessimism promotes enhanced exploration. As a result, we empirically observe that COPG produces improved learning compared to PPO in single-task, constrained, and multi-task learning, without adding significant computational cost or complexity. Compared to TRPO, the COPG approach is seen to offer comparable or superior performance, while retaining the simplicity of a first-order method.

Matching a source to a target probability measure is often solved by instantiating a linear optimal transport (OT) problem, parameterized by a ground cost function that quantifies discrepancy between points. When these measures live in the same metric space, the ground cost often defaults to its distance. When instantiated across two different spaces, however, choosing that cost in the absence of aligned data is a conundrum. As a result, practitioners often resort to solving instead a quadratic Gromow-Wasserstein (GW) problem. We exploit in this work a parallel between GW and cost-regularized OT, the regularized minimization of a linear OT objective parameterized by a ground cost. We use this cost-regularized formulation to match measures across two different Euclidean spaces, where the cost is evaluated between transformed source points and target points. We show that several quadratic OT problems fall in this category, and consider enforcing structure in linear transform (e.g. sparsity), by introducing structure-inducing regularizers. We provide a proximal algorithm to extract such transforms from unaligned data, and demonstrate its applicability to single-cell spatial transcriptomics/multiomics matching tasks.

Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.

In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them. However, the trained model cannot produce a highly discriminative feature representation for the target domain because the training data is dominated by labeled samples from the source domain. This could lead to disconnection between the labeled and unlabeled target samples as well as misalignment between unlabeled target samples and the source domain. In this paper, we propose a novel approach called Cross-domain Adaptive Clustering to address this problem. To achieve both inter-domain and intra-domain adaptation, we first introduce an adversarial adaptive clustering loss to group features of unlabeled target data into clusters and perform cluster-wise feature alignment across the source and target domains. We further apply pseudo labeling to unlabeled samples in the target domain and retain pseudo-labels with high confidence. Pseudo labeling expands the number of ``labeled" samples in each class in the target domain, and thus produces a more robust and powerful cluster core for each class to facilitate adversarial learning. Extensive experiments on benchmark datasets, including DomainNet, Office-Home and Office, demonstrate that our proposed approach achieves the state-of-the-art performance in semi-supervised domain adaptation.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司