亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The difficulty of appropriately assigning credit is particularly heightened in cooperative MARL with sparse reward, due to the concurrent time and structural scales involved. Automatic subgoal generation (ASG) has recently emerged as a viable MARL approach inspired by utilizing subgoals in intrinsically motivated reinforcement learning. However, end-to-end learning of complex task planning from sparse rewards without prior knowledge, undoubtedly requires massive training samples. Moreover, the diversity-promoting nature of existing ASG methods can lead to the "over-representation" of subgoals, generating numerous spurious subgoals of limited relevance to the actual task reward and thus decreasing the sample efficiency of the algorithm. To address this problem and inspired by the disentangled representation learning, we propose a novel "disentangled" decision-making method, Semantically Aligned task decomposition in MARL (SAMA), that prompts pretrained language models with chain-of-thought that can suggest potential goals, provide suitable goal decomposition and subgoal allocation as well as self-reflection-based replanning. Additionally, SAMA incorporates language-grounded RL to train each agent's subgoal-conditioned policy. SAMA demonstrates considerable advantages in sample efficiency compared to state-of-the-art ASG methods, as evidenced by its performance on two challenging sparse-reward tasks, Overcooked and MiniRTS.

相關內容

In low-bitrate speech coding, end-to-end speech coding networks aim to learn compact yet expressive features and a powerful decoder in a single network. A challenging problem as such results in unwelcome complexity increase and inferior speech quality. In this paper, we propose to separate the representation learning and information reconstruction tasks. We leverage an end-to-end codec for learning low-dimensional discrete tokens and employ a latent diffusion model to de-quantize coded features into a high-dimensional continuous space, relieving the decoder's burden of de-quantizing and upsampling. To mitigate the issue of over-smooth generation, we introduce midway-infilling with less noise reduction and stronger conditioning. In ablation studies, we investigate the hyperparameters for midway-infilling and latent diffusion space with different dimensions. Subjective listening tests show that our model outperforms the state-of-the-art at two low bitrates, 1.5 and 3 kbps. Codes and samples of this work are available on our webpage.

Video post-processing methods can improve the quality of compressed videos at the decoder side. Most of the existing methods need to train corresponding models for compressed videos with different quantization parameters to improve the quality of compressed videos. However, in most cases, the quantization parameters of the decoded video are unknown. This makes existing methods have their limitations in improving video quality. To tackle this problem, this work proposes a diffusion model based post-processing method for compressed videos. The proposed method first estimates the feature vectors of the compressed video and then uses the estimated feature vectors as the prior information for the quality enhancement model to adaptively enhance the quality of compressed video with different quantization parameters. Experimental results show that the quality enhancement results of our proposed method on mixed datasets are superior to existing methods.

The recent emergence of 6G raises the challenge of increasing the transmission data rate even further in order to overcome the Shannon limit. Traditional communication methods fall short of the 6G goals, paving the way for Semantic Communication (SemCom) systems that have applications in the metaverse, healthcare, economics, etc. In SemCom systems, only the relevant keywords from the data are extracted and used for transmission. In this paper, we design an auto-encoder and auto-decoder that only transmit these keywords and, respectively, recover the data using the received keywords and the shared knowledge. This SemCom system is used in a setup in which the receiver allocates various categories of the same dataset collected from the transmitter, which differ in size and accuracy, to a number of users. This scenario is formulated using an optimization problem called the data allocation problem (DAP). We show that it is NP-complete and propose a greedy algorithm to solve it. Using simulations, we show that the proposed methods for SemCom system design outperform state-of-the-art methods in terms of average number of words per sentence for a given accuracy, and that the proposed greedy algorithm solution of the DAP performs significantly close to the optimal solution.

This paper studies optimal estimation of large-dimensional nonlinear factor models. The key challenge is that the observed variables are possibly nonlinear functions of some latent variables where the functional forms are left unspecified. A local principal component analysis method is proposed to estimate the factor structure and recover information on latent variables and latent functions, which combines $K$-nearest neighbors matching and principal component analysis. Large-sample properties are established, including a sharp bound on the matching discrepancy of nearest neighbors, sup-norm error bounds for estimated local factors and factor loadings, and the uniform convergence rate of the factor structure estimator. Under mild conditions our estimator of the latent factor structure can achieve the optimal rate of uniform convergence for nonparametric regression. The method is illustrated with a Monte Carlo experiment and an empirical application studying the effect of tax cuts on economic growth.

It is unclear how to restructure ownership when an asset is privately held, and there is uncertainty about the owners' subjective valuations. When ownership is divided equally between two owners, a commonly used mechanism is called a BMBY mechanism. This mechanism works as follows: each owner can initiate a BMBY by naming her price. Once an owner declares a price, the other chooses to sell his holdings or buy the shares of the initiator at the given price. This mechanism is simple and tractable; however, it does not elicit actual owner valuations, does not guarantee an efficient allocation, and, most importantly, is limited to an equal partnership of two owners. In this paper, we extend this rationale to a multi-owner setting. Our proposed mechanism elicits owner valuations truthfully. Additionally, our proposed mechanism exhibits several desirable traits: it is easy to implement, budget balanced, robust to collusion (weakly group strategyproof), individually rational, and ex-post efficient.

The first part of this thesis focuses on maximizing the overall recommendation accuracy. This accuracy is usually evaluated with some user-oriented metric tailored to the recommendation scenario, but because recommendation is usually treated as a machine learning problem, recommendation models are trained to maximize some other generic criteria that does not necessarily align with the criteria ultimately captured by the user-oriented evaluation metric. Recent research aims at bridging this gap between training and evaluation via direct ranking optimization, but still assumes that the metric used for evaluation should also be the metric used for training. We challenge this assumption, mainly because some metrics are more informative than others. Indeed, we show that models trained via the optimization of a loss inspired by Rank-Biased Precision (RBP) tend to yield higher accuracy, even when accuracy is measured with metrics other than RBP. However, the superiority of this RBP-inspired loss stems from further benefiting users who are already well-served, rather than helping those who are not. This observation inspires the second part of this thesis, where our focus turns to helping non-mainstream users. These are users who are difficult to recommend to either because there is not enough data to model them, or because they have niche taste and thus few similar users to look at when recommending in a collaborative way. These differences in mainstreamness introduce a bias reflected in an accuracy gap between users or user groups, which we try to narrow.

We address the problem of keypoint selection, and find that the performance of 6DoF pose estimation methods can be improved when pre-defined keypoint locations are learned, rather than being heuristically selected as has been the standard approach. We found that accuracy and efficiency can be improved by training a graph network to select a set of disperse keypoints with similarly distributed votes. These votes, learned by a regression network to accumulate evidence for the keypoint locations, can be regressed more accurately compared to previous heuristic keypoint algorithms. The proposed KeyGNet, supervised by a combined loss measuring both Wasserstein distance and dispersion, learns the color and geometry features of the target objects to estimate optimal keypoint locations. Experiments demonstrate the keypoints selected by KeyGNet improved the accuracy for all evaluation metrics of all seven datasets tested, for three keypoint voting methods. The challenging Occlusion LINEMOD dataset notably improved ADD(S) by +16.4% on PVN3D, and all core BOP datasets showed an AR improvement for all objects, of between +1% and +21.5%. There was also a notable increase in performance when transitioning from single object to multiple object training using KeyGNet keypoints, essentially eliminating the SISO-MIMO gap for Occlusion LINEMOD.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain a decent performance even if user-item interactions are sparse.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司