亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we consider two coupled problems for distributed multi-robot systems (MRSs) coordinating with limited field of view (FOV) sensors: adaptive tuning of interaction gains and rejection of sensor attacks. First, a typical shortcoming of distributed control frameworks (e.g., potential fields) is that the overall system behavior is highly sensitive to the gain assigned to relative interactions. Second, MRSs with limited FOV sensors can be more susceptible to sensor attacks aimed at their FOVs, and therefore must be resilient to such attacks. Based on these shortcomings, we propose a comprehensive solution that combines efforts in adaptive gain tuning and attack resilience to the problem of topology control for MRSs with limited FOVs. Specifically, we first derive an adaptive gain tuning scheme based on satisfying nominal pairwise interactions, which yields a dynamic balancing of interaction strengths in a robot's neighborhood. We then model additive sensor and actuator attacks (or faults) and derive H infinity control protocols by employing a static output-feedback technique, guaranteeing bounded L2 gains of the error induced by the attack (fault) signals. Finally, simulation results using ROS Gazebo are provided to support our theoretical findings.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · state-of-the-art · 可約的 · 可交換的 · CARS ·
2022 年 2 月 22 日

With the advent of the Internet of Things (IoT), establishing a secure channel between smart devices becomes crucial. Recent research proposes zero-interaction pairing (ZIP), which enables pairing without user assistance by utilizing devices' physical context (e.g., ambient audio) to obtain a shared secret key. The state-of-the-art ZIP schemes suffer from three limitations: (1) prolonged pairing time (i.e., minutes or hours), (2) vulnerability to brute-force offline attacks on a shared key, and (3) susceptibility to attacks caused by predictable context (e.g., replay attack) because they rely on limited entropy of physical context to protect a shared key. We address these limitations, proposing FastZIP, a novel ZIP scheme that significantly reduces pairing time while preventing offline and predictable context attacks. In particular, we adapt a recently introduced Fuzzy Password-Authenticated Key Exchange (fPAKE) protocol and utilize sensor fusion, maximizing their advantages. We instantiate FastZIP for intra-car device pairing to demonstrate its feasibility and show how the design of FastZIP can be adapted to other ZIP use cases. We implement FastZIP and evaluate it by driving four cars for a total of 800 km. We achieve up to three times shorter pairing time compared to the state-of-the-art ZIP schemes while assuring robust security with adversarial error rates below 0.5%.

Precisely modeling interactions and accurately predicting trajectories of surrounding vehicles are essential to the decision-making and path-planning of intelligent vehicles. This paper proposes a novel framework based on ensemble learning to improve the performance of trajectory predictions in interactive scenarios. The framework is termed Interactive Ensemble Trajectory Predictor (IETP). IETP assembles interaction-aware trajectory predictors as base learners to build an ensemble learner. Firstly, each base learner in IETP observes historical trajectories of vehicles in the scene. Then each base learner handles interactions between vehicles to predict trajectories. Finally, an ensemble learner is built to predict trajectories by applying two ensemble strategies on the predictions from all base learners. Predictions generated by the ensemble learner are final outputs of IETP. In this study, three experiments using different data are conducted based on the NGSIM dataset. Experimental results show that IETP improves the predicting accuracy and decreases the variance of errors compared to base learners. In addition, IETP exceeds baseline models with 50% of the training data, indicating that IETP is data-efficient. Moreover, the implementation of IETP is publicly available at //github.com/BIT-Jack/IETP.

Networked control systems (NCSs) are feedback control loops that are closed over a communication network. Emerging applications, such as telerobotics, drones and autonomous driving are the most prominent examples of such systems. Regular and timely information sharing between the components of NCSs is essential, as stale information can lead to performance degradation or even physical damage. In this work, we consider multiple heterogeneous NCSs that transmit their system state over a shared physical wireless channel towards a gateway node. We conduct a comprehensive experimental study on selected MAC protocols using software-defined radios with state-of-the-art (SotA) solutions that have been designed to increase information freshness and control performance. As a significant improvement over the SotA, we propose a contention-free algorithm that is able to outperform the existing solutions by combining their strengths in one protocol. In addition, we propose a new metric called normalized mean squared error and demonstrate its effectiveness as utility for scheduling in a case study with multiple inverted pendulums. From our experimental study and results, we observe that a control-aware prioritization of the sub-systems contributes to minimizing the negative effects of information staleness on control performance. In particular, as the number of devices increases, the benefit of control-awareness to the quality of control stands out when compared to protocols that focus solely on maximizing information freshness.

Reliable pedestrian crash avoidance mitigation (PCAM) systems are crucial components of safe autonomous vehicles (AVs). The nature of the vehicle-pedestrian interaction where decisions of one agent directly affect the other agent's optimal behavior, and vice versa, is a challenging yet often neglected aspect of such systems. We address this issue by defining a Markov decision process (MDP) for a simulated driving scenario in which an AV driving along an urban street faces a pedestrian trying to cross an unmarked crosswalk. The AV's PCAM decision policy is learned through deep reinforcement learning (DRL). Since modeling pedestrians realistically is challenging, we compare two levels of intelligent pedestrian behavior. While the baseline model follows a predefined strategy, our advanced pedestrian model is defined as a second DRL agent. This model captures continuous learning and the uncertainty inherent in human behavior, making the vehicle-pedestrian interaction a deep multi-agent reinforcement learning (DMARL) problem. We benchmark the developed PCAM systems according to the agents' collision rate and the resulting traffic flow efficiency with a focus on the influence of observation uncertainty or noise on the decision-making of the agents. The results show that the AV is able to completely mitigate collisions under the majority of the investigated conditions, and that the DRL pedestrian model indeed learns a more intelligent crossing behavior.

Human-machine interaction has been around for several decades now, with new applications emerging every day. One of the major goals that remain to be achieved is designing an interaction similar to how a human interacts with another human. Therefore, there is a need to develop interactive systems that could replicate a more realistic and easier human-machine interaction. On the other hand, developers and researchers need to be aware of state-of-the-art methodologies being used to achieve this goal. We present this survey to provide researchers with state-of-the-art data fusion technologies implemented using multiple inputs to accomplish a task in the robotic application domain. Moreover, the input data modalities are broadly classified into uni-modal and multi-modal systems and their application in myriad industries, including the health care industry, which contributes to the medical industry's future development. It will help the professionals to examine patients using different modalities. The multi-modal systems are differentiated by a combination of inputs used as a single input, e.g., gestures, voice, sensor, and haptic feedback. All these inputs may or may not be fused, which provides another classification of multi-modal systems. The survey concludes with a summary of technologies in use for multi-modal systems.

Let $X$ and $Y$ be two real-valued random variables. Let $(X_{1},Y_{1}),(X_{2},Y_{2}),\ldots$ be independent identically distributed copies of $(X,Y)$. Suppose there are two players A and B. Player A has access to $X_{1},X_{2},\ldots$ and player B has access to $Y_{1},Y_{2},\ldots$. Without communication, what joint probability distributions can players A and B jointly simulate? That is, if $k,m$ are fixed positive integers, what probability distributions on $\{1,\ldots,m\}^{2}$ are equal to the distribution of $(f(X_{1},\ldots,X_{k}),\,g(Y_{1},\ldots,Y_{k}))$ for some $f,g\colon\mathbb{R}^{k}\to\{1,\ldots,m\}$? When $X$ and $Y$ are standard Gaussians with fixed correlation $\rho\in(-1,1)$, we show that the set of probability distributions that can be noninteractively simulated from $k$ Gaussian samples is the same for any $k\geq m^{2}$. Previously, it was not even known if this number of samples $m^{2}$ would be finite or not, except when $m\leq 2$. Consequently, a straightforward brute-force search deciding whether or not a probability distribution on $\{1,\ldots,m\}^{2}$ is within distance $0<\epsilon<|\rho|$ of being noninteractively simulated from $k$ correlated Gaussian samples has run time bounded by $(5/\epsilon)^{m(\log(\epsilon/2) / \log|\rho|)^{m^{2}}}$, improving a bound of Ghazi, Kamath and Raghavendra. A nonlinear central limit theorem (i.e. invariance principle) of Mossel then generalizes this result to decide whether or not a probability distribution on $\{1,\ldots,m\}^{2}$ is within distance $0<\epsilon<|\rho|$ of being noninteractively simulated from $k$ samples of a given finite discrete distribution $(X,Y)$ in run time that does not depend on $k$, with constants that again improve a bound of Ghazi, Kamath and Raghavendra.

This work is associated with the use of parallel feedforward compensators (PFCs) for the problem of output synchronization over heterogeneous agents and the benefits this approach can provide. Specifically, it addresses the addition of stable PFCs on agents that interact with each other using diffusive couplings. The value in the application of such PFC is twofold. Firstly, it has been an issue that output synchronization among passivity-short systems requires global information for the design of controllers in the cases when initial conditions need to be taken into account, such as average consensus and distributed optimization. We show that a stable PFC can be designed to passivate a passivity-short system while its output asymptotically vanishes as its input tends to zero. As a result, output synchronization is achieved among these systems by fully distributed controls without altering the original consensus results. Secondly, in the literature of output synchronization over signed weighted graphs, it is generally required that the graph Laplacian be positive semidefinite, i.e., $L \geq 0$ for undirected graphs or $L + L^T \geq 0$ for balanced directed graphs. We show that the PFC serves as output feedback to the communication graph to enhance the robustness against negative weight edges. As a result, output synchronization is achieved over a signed weighted and balanced graph, even if the corresponding Laplacian is not positive semidefinite.

Adversarial training is among the most effective techniques to improve the robustness of models against adversarial perturbations. However, the full effect of this approach on models is not well understood. For example, while adversarial training can reduce the adversarial risk (prediction error against an adversary), it sometimes increase standard risk (generalization error when there is no adversary). Even more, such behavior is impacted by various elements of the learning problem, including the size and quality of training data, specific forms of adversarial perturbations in the input, model overparameterization, and adversary's power, among others. In this paper, we focus on \emph{distribution perturbing} adversary framework wherein the adversary can change the test distribution within a neighborhood of the training data distribution. The neighborhood is defined via Wasserstein distance between distributions and the radius of the neighborhood is a measure of adversary's manipulative power. We study the tradeoff between standard risk and adversarial risk and derive the Pareto-optimal tradeoff, achievable over specific classes of models, in the infinite data limit with features dimension kept fixed. We consider three learning settings: 1) Regression with the class of linear models; 2) Binary classification under the Gaussian mixtures data model, with the class of linear classifiers; 3) Regression with the class of random features model (which can be equivalently represented as two-layer neural network with random first-layer weights). We show that a tradeoff between standard and adversarial risk is manifested in all three settings. We further characterize the Pareto-optimal tradeoff curves and discuss how a variety of factors, such as features correlation, adversary's power or the width of two-layer neural network would affect this tradeoff.

Many recommendation algorithms rely on user data to generate recommendations. However, these recommendations also affect the data obtained from future users. This work aims to understand the effects of this dynamic interaction. We propose a simple model where users with heterogeneous preferences arrive over time. Based on this model, we prove that naive estimators, i.e. those which ignore this feedback loop, are not consistent. We show that consistent estimators are efficient in the presence of myopic agents. Our results are validated using extensive simulations.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司